Ahmadkhan12 commited on
Commit
9a5dd5f
·
verified ·
1 Parent(s): 45aa776

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -3,19 +3,24 @@ import numpy as np
3
  import cv2
4
  from PIL import Image
5
  import streamlit as st
 
6
 
7
- # Load ONNX model
8
- onnx_model = ort.InferenceSession("onnx_model.onnx")
 
9
 
10
- # Emotion labels (same as the model's output classes)
11
  emotion_labels = ["Anger", "Disgust", "Fear", "Happy", "Sadness", "Surprise", "Neutral"]
12
 
 
 
 
13
  # Softmax function to convert logits to probabilities
14
  def softmax(logits):
15
  exp_logits = np.exp(logits - np.max(logits)) # Stability trick
16
  return exp_logits / np.sum(exp_logits)
17
 
18
- # Preprocess image function
19
  def preprocess_image(image):
20
  """Preprocess image to match model input requirements"""
21
  # Convert the image to grayscale
@@ -48,8 +53,9 @@ def predict_emotion_onnx(onnx_model, image_input):
48
  return emotion_labels[predicted_class], probabilities[predicted_class]
49
 
50
  # Streamlit interface
51
- st.title("Emotion Recognition with ONNX")
52
 
 
53
  uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
54
 
55
  if uploaded_file is not None:
@@ -65,3 +71,4 @@ if uploaded_file is not None:
65
  # Display the predicted emotion and probability
66
  st.write(f"Predicted Emotion: {emotion_label}")
67
  st.write(f"Confidence: {probability:.2f}")
 
 
3
  import cv2
4
  from PIL import Image
5
  import streamlit as st
6
+ import kagglehub # Import kagglehub to load the AffectNet dataset
7
 
8
+ # Download the AffectNet dataset
9
+ path = kagglehub.dataset_download("fatihkgg/affectnet-yolo-format")
10
+ print("Path to AffectNet dataset:", path)
11
 
12
+ # Emotion labels for AffectNet
13
  emotion_labels = ["Anger", "Disgust", "Fear", "Happy", "Sadness", "Surprise", "Neutral"]
14
 
15
+ # Load ONNX model
16
+ onnx_model = ort.InferenceSession("onnx_model.onnx")
17
+
18
  # Softmax function to convert logits to probabilities
19
  def softmax(logits):
20
  exp_logits = np.exp(logits - np.max(logits)) # Stability trick
21
  return exp_logits / np.sum(exp_logits)
22
 
23
+ # Preprocess image function for ONNX model
24
  def preprocess_image(image):
25
  """Preprocess image to match model input requirements"""
26
  # Convert the image to grayscale
 
53
  return emotion_labels[predicted_class], probabilities[predicted_class]
54
 
55
  # Streamlit interface
56
+ st.title("Emotion Recognition with ONNX and AffectNet")
57
 
58
+ # File uploader to upload images
59
  uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
60
 
61
  if uploaded_file is not None:
 
71
  # Display the predicted emotion and probability
72
  st.write(f"Predicted Emotion: {emotion_label}")
73
  st.write(f"Confidence: {probability:.2f}")
74
+