Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
-
from fer import FER
|
6 |
|
7 |
# Set the page config
|
8 |
st.set_page_config(page_title="Emotion Recognition App", layout="centered")
|
@@ -12,8 +11,15 @@ st.title("Emotion Recognition App")
|
|
12 |
# Upload an image
|
13 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
14 |
|
15 |
-
# Load
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Resize image to reduce memory usage
|
19 |
def resize_image(image, max_size=(800, 800)):
|
@@ -36,24 +42,31 @@ if uploaded_file is not None:
|
|
36 |
# Convert image to numpy array
|
37 |
image_np = np.array(image)
|
38 |
|
39 |
-
#
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
dominant_emotion = max(emotions, key=emotions.get)
|
48 |
|
49 |
-
# Draw
|
50 |
-
x, y, w, h = box
|
51 |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
52 |
|
53 |
-
# Display
|
54 |
cv2.putText(
|
55 |
image_np,
|
56 |
-
|
57 |
(x, y - 10),
|
58 |
cv2.FONT_HERSHEY_SIMPLEX,
|
59 |
0.9,
|
@@ -64,4 +77,4 @@ if uploaded_file is not None:
|
|
64 |
# Display the processed image
|
65 |
st.image(image_np, caption="Processed Image", use_column_width=True)
|
66 |
else:
|
67 |
-
st.warning("No faces detected
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
# Set the page config
|
7 |
st.set_page_config(page_title="Emotion Recognition App", layout="centered")
|
|
|
11 |
# Upload an image
|
12 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
13 |
|
14 |
+
# Load OpenCV's face detection model
|
15 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
16 |
+
|
17 |
+
# Load ONNX emotion detection model
|
18 |
+
emotion_model_path = "emotion_recognition.onnx" # Replace with your model path
|
19 |
+
emotion_net = cv2.dnn.readNetFromONNX(emotion_model_path)
|
20 |
+
|
21 |
+
# Emotion labels (based on model documentation)
|
22 |
+
emotion_labels = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
23 |
|
24 |
# Resize image to reduce memory usage
|
25 |
def resize_image(image, max_size=(800, 800)):
|
|
|
42 |
# Convert image to numpy array
|
43 |
image_np = np.array(image)
|
44 |
|
45 |
+
# Convert image to grayscale for face detection
|
46 |
+
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
47 |
+
|
48 |
+
# Detect faces
|
49 |
+
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
50 |
+
|
51 |
+
if len(faces) > 0:
|
52 |
+
for (x, y, w, h) in faces:
|
53 |
+
# Extract face ROI
|
54 |
+
face_roi = image_np[y:y+h, x:x+w]
|
55 |
+
face_blob = cv2.dnn.blobFromImage(face_roi, 1.0, (64, 64), (104, 117, 123), swapRB=True)
|
56 |
|
57 |
+
# Predict emotion
|
58 |
+
emotion_net.setInput(face_blob)
|
59 |
+
predictions = emotion_net.forward()
|
60 |
+
emotion_idx = np.argmax(predictions)
|
61 |
+
emotion = emotion_labels[emotion_idx]
|
|
|
62 |
|
63 |
+
# Draw rectangle around the face
|
|
|
64 |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
65 |
|
66 |
+
# Display emotion
|
67 |
cv2.putText(
|
68 |
image_np,
|
69 |
+
emotion,
|
70 |
(x, y - 10),
|
71 |
cv2.FONT_HERSHEY_SIMPLEX,
|
72 |
0.9,
|
|
|
77 |
# Display the processed image
|
78 |
st.image(image_np, caption="Processed Image", use_column_width=True)
|
79 |
else:
|
80 |
+
st.warning("No faces detected in the image.")
|