Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,46 @@
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
from groq import Groq
|
4 |
-
from langchain.chains import RetrievalQA
|
5 |
-
from langchain.vectorstores import FAISS
|
6 |
from langchain.document_loaders import PyPDFLoader
|
7 |
-
from langchain.
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
return embeddings
|
23 |
-
|
24 |
-
def embed_query(self, query):
|
25 |
-
# Use Groq's API to generate embedding for a query
|
26 |
-
return self.client.embed_query(query, model=self.model)
|
27 |
-
|
28 |
-
# Streamlit App UI
|
29 |
-
st.title("PDF Question-Answering with Groq Embeddings")
|
30 |
-
|
31 |
-
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
32 |
-
|
33 |
-
# Process the uploaded PDF
|
34 |
-
if uploaded_file is not None:
|
35 |
-
# Convert the uploaded file to a BytesIO object to read it in-memory
|
36 |
-
pdf_file = BytesIO(uploaded_file.read())
|
37 |
-
|
38 |
-
# Load the PDF file with PyPDFLoader
|
39 |
-
loader = PyPDFLoader(pdf_file)
|
40 |
-
documents = loader.load()
|
41 |
-
|
42 |
-
# Split documents into smaller chunks for better processing
|
43 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
44 |
-
split_docs = text_splitter.split_documents(documents)
|
45 |
-
|
46 |
-
# Create embeddings using Groq
|
47 |
-
embeddings = GroqEmbedding(model="groq-embedding-model") # Use your preferred Groq model
|
48 |
-
|
49 |
-
# Create a FAISS vector store with the embeddings
|
50 |
-
vector_db = FAISS.from_documents(split_docs, embeddings)
|
51 |
|
52 |
-
|
53 |
-
qa = RetrievalQA.from_chain_type(llm=None, chain_type="stuff", vectorstore=vector_db)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
import os
|
3 |
import streamlit as st
|
|
|
|
|
|
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.embeddings import Embedding
|
7 |
+
from langchain_community.embeddings.groq import GroqEmbedding
|
8 |
+
|
9 |
+
# Function to process PDF
|
10 |
+
def process_pdf(file):
|
11 |
+
# Save the uploaded file into a temporary file
|
12 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmpfile:
|
13 |
+
tmpfile.write(file.read()) # Write the uploaded file's content
|
14 |
+
tmpfile_path = tmpfile.name # Get the file path
|
15 |
+
return tmpfile_path
|
16 |
+
|
17 |
+
# Main function to run the app
|
18 |
+
def main():
|
19 |
+
st.title("PDF Embedding and Query System")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
|
|
22 |
|
23 |
+
if uploaded_file is not None:
|
24 |
+
# Process the uploaded PDF file
|
25 |
+
tmp_file_path = process_pdf(uploaded_file)
|
26 |
+
|
27 |
+
# Load the PDF content
|
28 |
+
loader = PyPDFLoader(tmp_file_path)
|
29 |
+
documents = loader.load()
|
30 |
+
|
31 |
+
# Use Groq embeddings (assuming Groq API key is set correctly)
|
32 |
+
embeddings = GroqEmbedding(api_key="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")
|
33 |
+
|
34 |
+
# Create a vector database
|
35 |
+
vector_db = FAISS.from_documents(documents, embeddings)
|
36 |
+
|
37 |
+
# Perform search or other actions
|
38 |
+
query = st.text_input("Enter a query to search:")
|
39 |
+
if query:
|
40 |
+
results = vector_db.similarity_search(query, k=5)
|
41 |
+
for result in results:
|
42 |
+
st.write(result["text"])
|
43 |
+
|
44 |
+
# Run the app
|
45 |
+
if __name__ == "__main__":
|
46 |
+
main()
|