Spaces:
Build error
Build error
File size: 8,611 Bytes
5f0b0b8 4226ecb 85ec17d 5f0b0b8 14984e1 5f0b0b8 e19cf90 5f0b0b8 4226ecb e19cf90 4226ecb e19cf90 4226ecb e19cf90 4226ecb e19cf90 4226ecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Import libraries
import os
import gradio as gr
import torch
import soundfile as sf
import numpy as np
from PIL import Image
import torch.nn.functional as F
import logging
from scipy.io.wavfile import write as write_wav
from scipy import signal
from moviepy.editor import VideoFileClip, AudioFileClip
import requests
from audiocraft.models import AudioGen, MusicGen # Use audiocraft for AudioGen and MusicGen
# Set up logging for better debug tracking
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger()
# Download Places365 class labels
try:
logging.info("Downloading Places365 class labels...")
url = "http://places2.csail.mit.edu/models_places365/categories_places365.txt"
response = requests.get(url)
with open("categories_places365.txt", "wb") as f:
f.write(response.content)
logging.info("Places365 class labels downloaded successfully.")
except Exception as e:
logging.error(f"Error downloading Places365 class labels: {e}")
raise
# Load Places365 model for scene detection (on CPU to save GPU memory)
try:
logging.info("Loading Places365 model for scene detection...")
places365 = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
places365.eval()
places365.to("cpu") # Move to CPU
logging.info("Places365 model loaded successfully.")
except Exception as e:
logging.error(f"Error loading Places365 model: {e}")
raise
# Load Places365 class labels
with open("categories_places365.txt", "r") as f:
SCENE_CLASSES = [line.strip().split(" ")[0][3:] for line in f.readlines()]
# Load AudioGen Medium and MusicGen Medium models
try:
logging.info("Loading AudioGen Medium and MusicGen Medium models...")
audiogen_model = AudioGen.get_pretrained("facebook/audiogen-medium")
musicgen_model = MusicGen.get_pretrained("facebook/musicgen-medium")
logging.info("AudioGen Medium and MusicGen Medium models loaded successfully.")
except Exception as e:
logging.error(f"Error loading AudioGen/MusicGen models: {e}")
raise
# Function to classify a frame using Places365
def classify_frame(frame):
try:
preprocess = transforms.Compose([
transforms.Resize(128), # Smaller resolution
transforms.CenterCrop(128),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
img = Image.fromarray(frame)
img = preprocess(img).unsqueeze(0)
with torch.no_grad():
output = places365(img.to("cpu")) # Ensure inference on CPU
probabilities = F.softmax(output, dim=1)
_, predicted = torch.max(probabilities, 1)
predicted_index = predicted.item()
# Ensure the predicted index is within the range of SCENE_CLASSES
if predicted_index >= len(SCENE_CLASSES) or predicted_index < 0:
logging.warning(f"Predicted class index {predicted_index} is out of range. Defaulting to 'nature'.")
return "nature" # Default scene type
scene_type = SCENE_CLASSES[predicted_index]
logging.info(f"Predicted scene: {scene_type}")
return scene_type
except Exception as e:
logging.error(f"Error classifying frame: {e}")
raise
# Function to analyze video content and return the scene type using Places365
def analyze_video(video_path):
try:
logging.info(f"Analyzing video: {video_path}")
clip = VideoFileClip(video_path)
frame = clip.get_frame(0) # Get the first frame
frame = Image.fromarray(frame) # Convert to PIL image
frame = np.array(frame.resize((128, 128))) # Resize to reduce memory usage
# Classify the frame using Places365
scene_type = classify_frame(frame)
logging.info(f"Scene type detected: {scene_type}")
return scene_type
except Exception as e:
logging.error(f"Error analyzing video: {e}")
raise
# Function to generate audio using AudioGen Medium
def generate_audio_audiogen(scene, duration=10):
try:
logging.info(f"Generating audio for scene: {scene} using AudioGen Medium...")
audiogen_model.set_generation_params(duration=duration)
descriptions = [f"Ambient sounds of {scene}"]
wav = audiogen_model.generate(descriptions) # Generate audio
audio_path = "generated_audio_audiogen.wav"
sf.write(audio_path, wav.squeeze().cpu().numpy(), 32000) # Save as WAV file
logging.info(f"Audio generated and saved to: {audio_path}")
return audio_path
except Exception as e:
logging.error(f"Error generating audio with AudioGen Medium: {e}")
raise
# Function to generate music using MusicGen Medium
def generate_music_musicgen(scene, duration=10):
try:
logging.info(f"Generating music for scene: {scene} using MusicGen Medium...")
musicgen_model.set_generation_params(duration=duration)
descriptions = [f"Calm music for {scene}"]
wav = musicgen_model.generate(descriptions) # Generate music
music_path = "generated_music_musicgen.wav"
sf.write(music_path, wav.squeeze().cpu().numpy(), 32000) # Save as WAV file
logging.info(f"Music generated and saved to: {music_path}")
return music_path
except Exception as e:
logging.error(f"Error generating music with MusicGen Medium: {e}")
raise
# Function to merge audio and video into a final video file using moviepy
def merge_audio_video(video_path, audio_path, output_path="output.mp4"):
try:
logging.info("Merging audio and video using moviepy...")
video_clip = VideoFileClip(video_path)
audio_clip = AudioFileClip(audio_path)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
logging.info(f"Final video saved to: {output_path}")
return output_path
except Exception as e:
logging.error(f"Error merging audio and video: {e}")
return None
# Main processing function to handle video upload, scene analysis, and video output
def process_video(video_path, progress=gr.Progress()):
try:
progress(0.1, desc="Starting video processing...")
logging.info("Starting video processing...")
# Analyze the video to determine the scene type
progress(0.3, desc="Analyzing video...")
scene_type = analyze_video(video_path)
# Generate audio using AudioGen Medium
progress(0.5, desc="Generating audio...")
audio_path = generate_audio_audiogen(scene_type, duration=10)
# Generate music using MusicGen Medium
progress(0.7, desc="Generating music...")
music_path = generate_music_musicgen(scene_type, duration=10)
# Merge the generated audio with the video and output the final video
progress(0.9, desc="Merging audio and video...")
output_path = merge_audio_video(video_path, music_path)
if not output_path:
return "Error: Failed to merge audio and video.", "Logs: Merge failed."
logging.info("Video processing completed successfully.")
return output_path, "Logs: Processing completed."
except Exception as e:
logging.error(f"Error in process_video: {e}")
return f"An error occurred during processing: {e}", f"Logs: {e}"
# Gradio UI for video upload
def gradio_interface(video_file, progress=gr.Progress()):
try:
progress(0.1, desc="Starting video processing...")
logging.info("Gradio interface triggered.")
output_video, logs = process_video(video_file, progress)
return output_video, logs
except Exception as e:
logging.error(f"Error in Gradio interface: {e}")
return f"An error occurred: {e}", f"Logs: {e}"
# Launch Gradio app
try:
logging.info("Launching Gradio app...")
interface = gr.Interface(
fn=gradio_interface,
inputs=[gr.Video(label="Upload Video")],
outputs=[gr.Video(label="Output Video with Generated Audio"), gr.Textbox(label="Logs", lines=10)],
title="Video to Video with Generated Audio and Music",
description="Upload a video, and this app will analyze it and generate matching audio and music using AudioGen Medium and MusicGen Medium."
)
interface.queue() # Enable queue for long-running tasks
interface.launch(share=True) # Launch the app
except Exception as e:
logging.error(f"Error launching Gradio app: {e}")
raise |