Commit
·
68f66aa
1
Parent(s):
533dac9
Update app.py
Browse files
app.py
CHANGED
@@ -5,68 +5,66 @@ import torch.nn as nn
|
|
5 |
import torchvision.transforms as transforms
|
6 |
import torchvision.models as models
|
7 |
import os
|
8 |
-
import torch
|
9 |
|
10 |
# Set device
|
11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
nn.Linear(num_ftrs, 2) # 2 classes: AI-generated Image, Real Image
|
20 |
-
)
|
21 |
-
|
22 |
-
main_model.load_state_dict(torch.load('best_model9.pth', map_location=device, weights_only=True)) # Updated: weights_only=True
|
23 |
-
main_model = main_model.to(device)
|
24 |
-
main_model.eval()
|
25 |
|
26 |
-
# Define class names for the classifier based on the Folder structure
|
27 |
classes_name = ['AI-generated Image', 'Real Image']
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
""
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
# Define preprocessing transformations
|
39 |
preprocess = transforms.Compose([
|
40 |
-
transforms.Lambda(
|
41 |
-
transforms.Resize((224, 224)),
|
42 |
transforms.ToTensor(),
|
43 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
44 |
])
|
45 |
|
46 |
-
def classify_image(image):
|
47 |
-
|
48 |
-
image = Image.fromarray(image)
|
49 |
|
50 |
-
|
51 |
input_image = preprocess(image).unsqueeze(0).to(device)
|
52 |
|
53 |
-
# Perform inference with the main classifier
|
54 |
with torch.no_grad():
|
55 |
-
output =
|
56 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
57 |
confidence, predicted_class = torch.max(probabilities, 0)
|
58 |
|
59 |
-
|
60 |
-
main_prediction = classes_name[predicted_class]
|
61 |
-
main_confidence = confidence.item()
|
62 |
-
|
63 |
-
return f"Image is : {main_prediction} (Confidence: {main_confidence:.4f})"
|
64 |
|
65 |
-
# Gradio interface
|
66 |
-
image_input = gr.Image(image_mode="RGB")
|
|
|
67 |
output_text = gr.Textbox()
|
68 |
|
69 |
-
gr.Interface(fn=classify_image, inputs=image_input, outputs=[output_text],
|
70 |
-
title="
|
71 |
-
description="Upload an image to
|
72 |
-
theme="default").launch()
|
|
|
5 |
import torchvision.transforms as transforms
|
6 |
import torchvision.models as models
|
7 |
import os
|
|
|
8 |
|
9 |
# Set device
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
|
12 |
+
# Define available models and their corresponding file names
|
13 |
+
model_options = {
|
14 |
+
"ResNet-18": (models.resnet18, "resnet18_model.pth"),
|
15 |
+
"MobileNetV3 Large": (models.mobilenet_v3_large, "mobilenet_v3_large_model.pth"),
|
16 |
+
"MobileNetV3 Small": (models.mobilenet_v3_small, "mobilenet_v3_small_model.pth")
|
17 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
classes_name = ['AI-generated Image', 'Real Image']
|
20 |
|
21 |
+
def load_model(model_name):
|
22 |
+
model_func, model_path = model_options[model_name]
|
23 |
+
model = model_func(weights=None) # Load model without pretrained weights
|
24 |
+
|
25 |
+
if "resnet" in model_name.lower():
|
26 |
+
num_ftrs = model.fc.in_features
|
27 |
+
model.fc = nn.Sequential(
|
28 |
+
nn.Dropout(p=0.5),
|
29 |
+
nn.Linear(num_ftrs, 2)
|
30 |
+
)
|
31 |
+
else: # For MobileNetV3
|
32 |
+
num_ftrs = model.classifier[-1].in_features
|
33 |
+
model.classifier[-1] = nn.Linear(num_ftrs, 2)
|
34 |
+
|
35 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
36 |
+
model = model.to(device)
|
37 |
+
model.eval()
|
38 |
+
|
39 |
+
return model
|
40 |
|
41 |
+
# Define preprocessing transformations
|
42 |
preprocess = transforms.Compose([
|
43 |
+
transforms.Lambda(lambda img: img.convert('RGB') if img.mode in ('P', 'RGBA') else img),
|
44 |
+
transforms.Resize((224, 224)),
|
45 |
transforms.ToTensor(),
|
46 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
47 |
])
|
48 |
|
49 |
+
def classify_image(image, model_name):
|
50 |
+
model = load_model(model_name)
|
|
|
51 |
|
52 |
+
image = Image.fromarray(image)
|
53 |
input_image = preprocess(image).unsqueeze(0).to(device)
|
54 |
|
|
|
55 |
with torch.no_grad():
|
56 |
+
output = model(input_image)
|
57 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
58 |
confidence, predicted_class = torch.max(probabilities, 0)
|
59 |
|
60 |
+
return f"Image is: {classes_name[predicted_class]} (Confidence: {confidence.item():.4f})"
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
# Gradio interface
|
63 |
+
image_input = gr.Image(image_mode="RGB")
|
64 |
+
model_choice = gr.Radio(choices=list(model_options.keys()), label="Choose Model", value="ResNet-18")
|
65 |
output_text = gr.Textbox()
|
66 |
|
67 |
+
gr.Interface(fn=classify_image, inputs=[image_input, model_choice], outputs=[output_text],
|
68 |
+
title="AI-Generated Image Detector",
|
69 |
+
description="Upload an image and choose a model to detect AI-generated images.",
|
70 |
+
theme="default").launch()
|