Commit
·
a131fad
1
Parent(s):
4481824
Update app.py
Browse files
app.py
CHANGED
@@ -5,77 +5,68 @@ import torch.nn as nn
|
|
5 |
import torchvision.transforms as transforms
|
6 |
import torchvision.models as models
|
7 |
import os
|
|
|
8 |
|
9 |
# Set device
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
if model_name == "ResNet-18":
|
21 |
-
model = models.resnet18(weights=None)
|
22 |
-
num_ftrs = model.fc.in_features
|
23 |
-
model.fc = nn.Sequential(
|
24 |
-
nn.Dropout(p=0.5),
|
25 |
-
nn.Linear(num_ftrs, 2)
|
26 |
-
)
|
27 |
-
elif model_name == "MobileNetV3 Large":
|
28 |
-
model = models.mobilenet_v3_large(weights=None)
|
29 |
-
num_ftrs = model.classifier[-1].in_features
|
30 |
-
model.classifier[-1] = nn.Linear(num_ftrs, 2)
|
31 |
-
elif model_name == "MobileNetV3 Small":
|
32 |
-
model = models.mobilenet_v3_small(weights=None)
|
33 |
-
num_ftrs = model.classifier[3].in_features
|
34 |
-
model.classifier[3] = nn.Linear(num_ftrs, 2)
|
35 |
-
else:
|
36 |
-
raise ValueError("Invalid model name")
|
37 |
-
|
38 |
-
return model
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
model.load_state_dict(torch.load(model_path, map_location=device))
|
44 |
-
model = model.to(device)
|
45 |
-
model.eval()
|
46 |
-
return model
|
47 |
|
|
|
48 |
classes_name = ['AI-generated Image', 'Real Image']
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
preprocess = transforms.Compose([
|
52 |
-
transforms.Lambda(
|
53 |
-
transforms.Resize((224, 224)),
|
54 |
transforms.ToTensor(),
|
55 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
56 |
])
|
57 |
|
58 |
-
def classify_image(image
|
59 |
-
|
60 |
-
return "Please upload an image."
|
61 |
-
|
62 |
-
model = load_model(model_name)
|
63 |
image = Image.fromarray(image)
|
|
|
|
|
64 |
input_image = preprocess(image).unsqueeze(0).to(device)
|
65 |
|
|
|
66 |
with torch.no_grad():
|
67 |
-
output =
|
68 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
69 |
confidence, predicted_class = torch.max(probabilities, 0)
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
# Gradio interface
|
74 |
-
image_input = gr.Image(image_mode="RGB")
|
75 |
-
model_choice = gr.Dropdown(choices=list(model_paths.keys()), label="Choose Model", value="ResNet-18")
|
76 |
output_text = gr.Textbox()
|
77 |
|
78 |
-
gr.Interface(fn=classify_image, inputs=
|
79 |
-
title="AI-
|
80 |
-
description="Upload an image
|
81 |
theme="default").launch()
|
|
|
5 |
import torchvision.transforms as transforms
|
6 |
import torchvision.models as models
|
7 |
import os
|
8 |
+
import torch
|
9 |
|
10 |
# Set device
|
11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
|
13 |
+
# Load the main classifier (Detector_best_model.pth)
|
14 |
+
main_model = models.resnet18(weights=None) # Updated: weights=None
|
15 |
+
num_ftrs = main_model.fc.in_features
|
16 |
+
# main_model.fc = nn.Linear(num_ftrs, 2) # 2 classes: AI-generated_Image, Real_Image
|
17 |
+
main_model.fc = nn.Sequential(
|
18 |
+
nn.Dropout(p=0.5), # Match the training architecture
|
19 |
+
nn.Linear(num_ftrs, 2) # 2 classes: AI-generated Image, Real Image
|
20 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
main_model.load_state_dict(torch.load('best_model9.pth', map_location=device, weights_only=True)) # Updated: weights_only=True
|
23 |
+
main_model = main_model.to(device)
|
24 |
+
main_model.eval()
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Define class names for the classifier based on the Folder structure
|
27 |
classes_name = ['AI-generated Image', 'Real Image']
|
28 |
|
29 |
+
def convert_to_rgb(image):
|
30 |
+
"""
|
31 |
+
Converts 'P' mode images with transparency to 'RGBA', and then to 'RGB'.
|
32 |
+
This is to avoid transparency issues during model training.
|
33 |
+
"""
|
34 |
+
if image.mode in ('P', 'RGBA'):
|
35 |
+
return image.convert('RGB')
|
36 |
+
return image
|
37 |
+
|
38 |
+
# Define preprocessing transformations (same used during training)
|
39 |
preprocess = transforms.Compose([
|
40 |
+
transforms.Lambda(convert_to_rgb),
|
41 |
+
transforms.Resize((224, 224)), # Resize here, no need for shape argument in gr.Image
|
42 |
transforms.ToTensor(),
|
43 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ImageNet normalization
|
44 |
])
|
45 |
|
46 |
+
def classify_image(image):
|
47 |
+
# Open the image using PIL
|
|
|
|
|
|
|
48 |
image = Image.fromarray(image)
|
49 |
+
|
50 |
+
# Preprocess the image
|
51 |
input_image = preprocess(image).unsqueeze(0).to(device)
|
52 |
|
53 |
+
# Perform inference with the main classifier
|
54 |
with torch.no_grad():
|
55 |
+
output = main_model(input_image)
|
56 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
57 |
confidence, predicted_class = torch.max(probabilities, 0)
|
58 |
|
59 |
+
# Main classifier result
|
60 |
+
main_prediction = classes_name[predicted_class]
|
61 |
+
main_confidence = confidence.item()
|
62 |
+
|
63 |
+
return f"Image is : {main_prediction} (Confidence: {main_confidence:.4f})"
|
64 |
|
65 |
+
# Gradio interface (updated)
|
66 |
+
image_input = gr.Image(image_mode="RGB") # Removed shape argument
|
|
|
67 |
output_text = gr.Textbox()
|
68 |
|
69 |
+
gr.Interface(fn=classify_image, inputs=image_input, outputs=[output_text],
|
70 |
+
title="Detect AI-generated Image ",
|
71 |
+
description="Upload an image to Detected AI-generated Image .",
|
72 |
theme="default").launch()
|