File size: 4,914 Bytes
7b09497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c6904
7b09497
 
 
 
 
 
 
 
 
 
 
90c6904
7b09497
 
 
 
 
 
 
 
90c6904
7b09497
 
 
 
 
 
 
 
90c6904
7b09497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import streamlit as st
from PIL import Image
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.models as models
import numpy as np

# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the main classifier (Main_Classifier_best_model.pth)
main_model = models.resnet18(pretrained=False)
num_ftrs = main_model.fc.in_features
main_model.fc = nn.Linear(num_ftrs, 3)  # 3 classes: Soda drinks, Clothing, Mobile Phones
main_model.load_state_dict(torch.load('Main_Classifier_best_model.pth', map_location=device))
main_model = main_model.to(device)
main_model.eval()

# Define class names for the main classifier based on folder structure
main_class_names = ['Clothing', 'Mobile Phones', 'Soda drinks']

# Sub-classifier models
def load_soda_drinks_model():
    model = models.resnet18(pretrained=False)
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 3)  # 3 classes: Miranda, Pepsi, Seven Up
    model.load_state_dict(torch.load('Soda_drinks_best_model.pth', map_location=device))
    model = model.to(device)
    model.eval()
    return model

def load_clothing_model():
    model = models.resnet18(pretrained=False)
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 2)  # 2 classes: Pants, T-Shirt
    model.load_state_dict(torch.load('Clothes_best_model.pth', map_location=device))
    model = model.to(device)
    model.eval()
    return model

def load_mobile_phones_model():
    model = models.resnet18(pretrained=False)
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 2)  # 2 classes: Apple, Samsung
    model.load_state_dict(torch.load('Phone_best_model.pth', map_location=device))
    model = model.to(device)
    model.eval()
    return model

def convert_to_rgb(image):
    """
    Converts 'P' mode images with transparency to 'RGBA', and then to 'RGB'.
    This is to avoid transparency issues during model training.
    """
    if image.mode in ('P', 'RGBA'):
        return image.convert('RGB')
    return image

# Define preprocessing transformations (same used during training)
preprocess = transforms.Compose([
    transforms.Lambda(convert_to_rgb),
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # ImageNet normalization
])

# Streamlit App Interface
st.title("Main Classifier and Sub-Classifier System")
st.write("Upload an image to classify whether it belongs to Clothing, Mobile Phones, or Soda Drinks. Based on the prediction, it will further classify within the subcategory.")

# Image uploader in Streamlit
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    # Open the image using PIL
    image = Image.open(uploaded_file)

    # Display the uploaded image
    st.image(image, caption='Uploaded Image', use_column_width=True)
    st.write("")
    st.write("Classifying...")

    # Preprocess the image
    input_image = preprocess(image).unsqueeze(0).to(device)

    # Perform inference with the main classifier
    with torch.no_grad():
        output = main_model(input_image)
        probabilities = torch.nn.functional.softmax(output[0], dim=0)
        confidence, predicted_class = torch.max(probabilities, 0)

    # Display the main classifier result
    main_prediction = main_class_names[predicted_class]
    st.write(f"**Main Predicted Class:** {main_prediction}")
    st.write(f"**Confidence:** {confidence.item():.4f}")

    # Load and apply the sub-classifier based on the main classification
    if main_prediction == 'Soda drinks':
        st.write("Loading Soda Drinks Model...")
        soda_model = load_soda_drinks_model()
        sub_class_names = ['Miranda', 'Pepsi', 'Seven Up']
    elif main_prediction == 'Clothing':
        st.write("Loading Clothing Model...")
        clothing_model = load_clothing_model()
        sub_class_names = ['Pants', 'T-Shirt']
    elif main_prediction == 'Mobile Phones':
        st.write("Loading Mobile Phones Model...")
        phones_model = load_mobile_phones_model()
        sub_class_names = ['Apple', 'Samsung']

    # Perform inference with the sub-classifier
    with torch.no_grad():
        if main_prediction == 'Soda drinks':
            sub_output = soda_model(input_image)
        elif main_prediction == 'Clothing':
            sub_output = clothing_model(input_image)
        elif main_prediction == 'Mobile Phones':
            sub_output = phones_model(input_image)
        
        sub_probabilities = torch.nn.functional.softmax(sub_output[0], dim=0)
        sub_confidence, sub_predicted_class = torch.max(sub_probabilities, 0)

    # Display the sub-classifier result
    st.write(f"**Sub Predicted Class:** {sub_class_names[sub_predicted_class]}")
    st.write(f"**Confidence:** {sub_confidence.item():.4f}")