File size: 12,097 Bytes
d625688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from mutation_models import codegen_mutate
from utils import read_python_file, extract_code_section, get_class
from evaluations import is_trainable

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

import numpy as np
import os
import random
import hydra
import ray

from conf.config import Config


class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 1, 1)
        self.fc1 = nn.Linear(1024, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        return x


def fixer_test(cfg):
    ray.init()
    exp_name = "0003"
    path_nets = f"codegen_tests/{exp_name}"
    if not os.path.exists(path_nets):
        os.makedirs(os.path.normpath(path_nets))
    main_net_focus = read_python_file(os.path.normpath("/mnt/lustre/users/mnasir/NAS-LLM/best_net.py"))
    print(main_net_focus)
    #fixing_prompt = '"""Create another class that inherits from nn.Module to edit the above network such that it works when torch.zeros((1, 3, 32, 32)) is passed as an input"""'
    #fixing_prompt = '"""Fix the above neural network bu editing the layers such that it takes torch.zeros((1,3,32,32)) as inputs and output as tensor of size torch.size((1,10))"""'
    fixing_prompt = '"""The above neural network does not work in the current form. Add or delete layers to fix the above neural network such that it takes torch.zeros((1,3,32,32)) as inputs and output as tensor of size torch.size((1,10))"""'
    for i in range(10):
        (print(f"Test {i}"))
        
        fixed_net_results = codegen_mutate.remote(cfg=cfg, prompt=main_net_focus + "\n" + fixing_prompt, temperature = 0.1)
        extract_code_section(ray.get(fixed_net_results), fixing_prompt, file_path=os.path.normpath(f"{path_nets}/fixed_net_{i}.py"))
        print(read_python_file(os.path.normpath(f"{path_nets}/fixed_net_{i}.py")))
        try:
            Net = get_class(os.path.normpath(f"{path_nets}/fixed_net_{i}.py"))             
            net = Net()
            if is_trainable(net):
                print("TRUE")
            else:
                print("FALSE")
        except Exception as e:
            print(f"FALSE because of {e}")


def init_net_test(cfg):
    ray.init()
    exp_name = "init_net_test_0007"
    path_nets = f"codegen_tests/{exp_name}"
    if not os.path.exists(path_nets):
        os.makedirs(os.path.normpath(path_nets))
    init_net_prompt = '"""Create a simple neural network class that inherits from nn.Module pytorch class. It should accept input tensor of size 32 x 32 x 3 and output 10 neurons for classification task"""'
    for i in range(10):
        (print(f"Test {i}"))
        
        fixed_net_results = codegen_mutate.remote(cfg=cfg, prompt=init_net_prompt, temperature = 0.3)
        extract_code_section(ray.get(fixed_net_results), init_net_prompt, file_path=os.path.normpath(f"{path_nets}/init_net_{i}.py"))
        print(read_python_file(os.path.normpath(f"{path_nets}/init_net_{i}.py")))
        try:
            Net = get_class(os.path.normpath(f"{path_nets}/init_net_{i}.py"))             
            net = Net()
            if is_trainable(net):
                print("TRUE")
            else:
                print("FALSE")
        except Exception as e:
            print(f"FALSE because of {e}")

def mutation_test(cfg):
    ray.init()
    exp_name = "mutation_test_0005"

    prompts = ['"""Add a layer to improve the above network"""',
               '"""Delete a layer to improve the above network"""',
               '"""Increase the width of the above neural network"""',
               '"""Decrease the width of the above neural network"""',
               '"""Increase the depth of the above neural network"""',
               '"""Decrease the depth of the above neural network"""',
               '"""Add fully connected layer to improve the above network"""',
               '"""Add convolutional layer to improve the above network"""',
               '"""Add pooling layer to improve the above network"""',
               '"""Add residual connection to improve the above network"""',
               '"""Add multiple residual connections to improve the above network"""',
               '"""Add dropout layer to improve the above network"""',
               '"""Add normalization layer to improve the above network"""',
                ]
    path_nets = f"codegen_tests/{exp_name}"
    if not os.path.exists(path_nets):
        os.makedirs(os.path.normpath(path_nets))

    
    seed_value = 1
    for prompt in prompts:
        (print(f"Test on prompt: {prompt}"))

        seed_value = seed_value + 10
        torch.manual_seed(seed_value)

        mutation_prompt = \
        f'''class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 1, 1)
        self.fc1 = nn.Linear(1024, 10)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        return x
    
{prompt}'''
        
        fixed_net_results = codegen_mutate.remote(cfg=cfg, prompt=mutation_prompt, temperature = 0.6)
        extract_code_section(ray.get(fixed_net_results), mutation_prompt, file_path=os.path.normpath(f"{path_nets}/mu_net_{prompt}.py"))
        print(read_python_file(os.path.normpath(f"{path_nets}/mu_net_{prompt}.py")))
        try:
            Net = get_class(os.path.normpath(f"{path_nets}/mu_net_{prompt}.py"))             
            net = Net()
            if is_trainable(net):
                print("TRUE")
            else:
                print("FALSE")
        except Exception as e:
            print(f"FALSE because of {e}")


def crossover_test(cfg):
    ray.init()
    exp_name = "crossover_test_0001"

    prompt = '''

    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(3, 6, 5)
            self.pool = nn.MaxPool2d(2, 2)
            self.conv2 = nn.Conv2d(6, 16, 5)
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)

        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x)))
            x = self.pool(F.relu(self.conv2(x)))
            x = x.view(-1, 16 * 5 * 5)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x

    class Net2(nn.Module):
        def __init__(self):
            super(Net2, self).__init__()
            self.conv1 = nn.Conv2d(3, 1, 1)
            self.fc1 = nn.Linear(1024 128)
            self.fc2 = nn.Linear(128, 64)
            self.fc3 = nn.Linear(64, 32)
            self.fc4 = nn.Linear(32, 10)
    
        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x)))
            x = torch.flatten(x, 1)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = F.relu(self.fc3(x))
            x = self.fc4(x)
            return x
    
    """Perform a crossover between above two neural networks and create a third neural network class that gets the best layers from above two networks"""'''
    path_nets = f"codegen_tests/{exp_name}"
    if not os.path.exists(path_nets):
        os.makedirs(os.path.normpath(path_nets))
    for i in range(10):
        (print(f"Test {i}"))
        
        fixed_net_results = codegen_mutate.remote(cfg=cfg, prompt=prompt, temperature = 0.6)
        extract_code_section(ray.get(fixed_net_results), prompt, file_path=os.path.normpath(f"{path_nets}/init_net_{i}.py"))
        print(read_python_file(os.path.normpath(f"{path_nets}/init_net_{i}.py")))
        try:
            Net = get_class(os.path.normpath(f"{path_nets}/init_net_{i}.py"))             
            net = Net()
            if is_trainable(net):
                print("TRUE")
            else:
                print("FALSE")
        except Exception as e:
            print(f"FALSE because of {e}")


def diff_mutate_test(cfg):
    ray.init()
    exp_name = "diff_mutate_test_0004"
    path_nets = f"codegen_tests/{exp_name}"
    if not os.path.exists(path_nets):
        os.makedirs(os.path.normpath(path_nets))
    diff_prompts = ['<NME> initial_net.py\n'
    '<BFE> import torch\n'
    'import torch.nn as nn\n'
    'import torch.nn.functional as F\n'
    '"""Returns a pytorch neural network class that takes an image of 3 x 32 x 32 as input and outputs 10 neurons."""\n'
    'class Net(nn.Module):\n'
    '   def __init__(self):\n'
    '       super().__init__()\n'
    '       self.conv1 = nn.Conv2d(3, 1, 1)\n'
    '       self.fc1 = nn.Linear(1024, 10)\n'
    '   def forward(self, x):\n'
    '       x = F.relu(self.conv1(x))\n'
    '       x = torch.flatten(x, 1)\n'
    '       x = F.relu(self.fc1(x))\n'
    '       return x\n'
    '<MSG> Added a nn.Conv2d layer to improve the neural network.\n',
    '<NME> initial_net.py\n'
    '<BFE> import torch\n'
    'import torch.nn as nn\n'
    'import torch.nn.functional as F\n'
    '"""Returns a pytorch neural network class that takes an image of 3 x 32 x 32 as input and outputs 10 neurons."""\n'
    'class Net(nn.Module):\n'
    '   def __init__(self):\n'
    '       super().__init__()\n'
    '       self.conv1 = nn.Conv2d(3, 1, 1)\n'
    '       self.fc1 = nn.Linear(1024, 10)\n'
    '   def forward(self, x):\n'
    '       x = F.relu(self.conv1(x))\n'
    '       x = torch.flatten(x, 1)\n'
    '       x = F.relu(self.fc1(x))\n'
    '       return x\n'
    '<MSG> Added a nn.Linear layer to improve the neural network.\n',
    '<NME> initial_net.py\n'
    '<BFE> import torch\n'
    'import torch.nn as nn\n'
    'import torch.nn.functional as F\n'
    '"""Returns a pytorch neural network class that takes an image of 3 x 32 x 32 as input and outputs 10 neurons."""\n'
    'class Net(nn.Module):\n'
    '   def __init__(self):\n'
    '       super().__init__()\n'
    '       self.conv1 = nn.Conv2d(3, 1, 1)\n'
    '       self.fc1 = nn.Linear(1024, 10)\n'
    '   def forward(self, x):\n'
    '       x = F.relu(self.conv1(x))\n'
    '       x = torch.flatten(x, 1)\n'
    '       x = F.relu(self.fc1(x))\n'
    '       return x\n'
    '<MSG> Added a nn.Conv2d and a nn.Linear layer to improve the neural network.\n',
    '<NME> initial_net.py\n'
    '<BFE> import torch\n'
    'import torch.nn as nn\n'
    'import torch.nn.functional as F\n'
    '"""Returns a pytorch neural network class that takes an image of 3 x 32 x 32 as input and outputs 10 neurons."""\n'
    'class Net(nn.Module):\n'
    '   def __init__(self):\n'
    '       super().__init__()\n'
    '       self.conv1 = nn.Conv2d(3, 1, 1)\n'
    '       self.fc1 = nn.Linear(1024, 10)\n'
    '   def forward(self, x):\n'
    '       x = F.relu(self.conv1(x))\n'
    '       x = torch.flatten(x, 1)\n'
    '       x = F.relu(self.fc1(x))\n'
    '       return x\n'
    '<MSG> Added layers to improve the neural network.\n']
    for i,diff_prompt in enumerate(diff_prompts):
        (print(f"Test {i}"))
        
        fixed_net_results = codegen_mutate.remote(cfg=cfg, prompt=diff_prompt, temperature = 0.8)
        res = ray.get(fixed_net_results)
        print(res)
        extract_code_section(res, diff_prompt, file_path=os.path.normpath(f"{path_nets}/diff_prompt_{i}.py"))
        print(read_python_file(os.path.normpath(f"{path_nets}/diff_prompt_{i}.py")))
        try:
            Net = get_class(os.path.normpath(f"{path_nets}/diff_prompt_{i}.py"))             
            net = Net()
            if is_trainable(net):
                print("TRUE")
            else:
                print("FALSE")
        except Exception as e:
            print(f"FALSE because of {e}")


@hydra.main(version_base="1.3.0", config_path="conf", config_name="config")    
def main(cfg: Config):
    #fixer_test(cfg)
    #init_net_test(cfg)
    #mutation_test(cfg)
    crossover_test(cfg)
    #diff_mutate_test(cfg)


if __name__ == "__main__":
    main()