Spaces:
No application file
No application file
File size: 23,572 Bytes
d625688 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
#| This file has a major part from the pymap_elites framework.
#| Copyright 2019, INRIA
#| Main contributor(s):
#| Jean-Baptiste Mouret, [email protected]
#| Eloise Dalin , [email protected]
#| Pierre Desreumaux , [email protected]
#|
#|
#| **Main paper**: Mouret JB, Clune J. Illuminating search spaces by
#| mapping elites. arXiv preprint arXiv:1504.04909. 2015 Apr 20.
#|
#| This software is governed by the CeCILL license under French law
#| and abiding by the rules of distribution of free software. You
#| can use, modify and/ or redistribute the software under the terms
#| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
#| following URL "http://www.cecill.info".
#|
#| As a counterpart to the access to the source code and rights to
#| copy, modify and redistribute granted by the license, users are
#| provided only with a limited warranty and the software's author,
#| the holder of the economic rights, and the successive licensors
#| have only limited liability.
#|
#| In this respect, the user's attention is drawn to the risks
#| associated with loading, using, modifying and/or developing or
#| reproducing the software by the user in light of its specific
#| status of free software, that may mean that it is complicated to
#| manipulate, and that also therefore means that it is reserved for
#| developers and experienced professionals having in-depth computer
#| knowledge. Users are therefore encouraged to load and test the
#| software's suitability as regards their requirements in conditions
#| enabling the security of their systems and/or data to be ensured
#| and, more generally, to use and operate it in the same conditions
#| as regards security.
#|
#| The fact that you are presently reading this means that you have
#| had knowledge of the CeCILL license and that you accept its terms.
import math
import numpy as np
import multiprocessing
# from scipy.spatial import cKDTree : TODO -- faster?
from sklearn.neighbors import KDTree
from map_elites import common as cm
from flopth import flopth
from datasets import get_datasets
from utils import read_python_file, extract_code, get_net_name, extract_code_section, get_class, csv_writer, get_max_curiosity, get_max_fitness, count_unique_components, count_parameters, get_network_width_depth_ratio
from utils import Net
from mutation_models import codegen_mutate, codex_mutate, replace_word_mutation
from evaluations import is_trainable
from train import train_net_on_cpu, train_net_on_gpu, forward_pass_on_cpu,forward_pass_on_gpu, detect_layers, transfer_weights
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import numpy as np
import os
import random
import hydra
import ray
from fvcore.nn import FlopCountAnalysis
from conf.config import Config
def __add_to_archive(s, centroid, archive, kdt, type_ind):
niche_index = kdt.query([centroid], k=1)[1][0][0]
niche = kdt.data[niche_index]
n = cm.make_hashable(niche)
s.centroid = n
if n in archive:
if type_ind == "network":
if s.fitness < archive[n].fitness:
archive[n] = s
return True
elif type_ind == "prompt":
if s.fitness > archive[n].fitness:
archive[n] = s
return True
return False
else:
archive[n] = s
return True
def to_specie(net,fit,desc,net_path):
return cm.Species(net, desc, fit, net_path)
# map-elites algorithm (CVT variant)
@hydra.main(version_base="1.3.0", config_path="conf", config_name="config")
def main(cfg: Config):
"""CVT MAP-Elites
Vassiliades V, Chatzilygeroudis K, Mouret JB. Using centroidal voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary Computation. 2017 Aug 3;22(4):623-30.
Format of the logfile: evals archive_size max mean median 5%_percentile, 95%_percentile
"""
if cfg.DEVICE == "cuda":
ray.init(num_gpus=cfg.NUM_GPUS_TOTAL)
else:
ray.init()
mutation_fn = codex_mutate if cfg.MUTATION == "codex" else codegen_mutate
prompts = ['"""Add a layer to improve the above network"""',
'"""Delete a layer to improve the above network"""',
'"""improve the above network"""',
'"""improve the above network by reducing the size drastically"""',
'"""improve the above network by increasing the size drastically"""',
# Specific prompts below
'"""Add fully connected layer to improve the above network"""',
'"""Add convolutional layer to improve the above network"""',
'"""Add pooling layer to improve the above network"""',
'"""Add residual connection to improve the above network"""',
'"""Add multiple residual connections to improve the above network"""',
'"""Add dropout layer to improve the above network"""',
'"""Add normalization layer to improve the above network"""',
'"""Add recurrent layer to improve the above network"""',
]
probabilities = [1.0 / len(prompts)] * len(prompts)
prompt_score = {}
for prompt in prompts:
prompt_score[prompt] = 0
prompt_score["None"] = 0
prompt_to_int = {}
int_to_prompt = {}
for i,prompt in enumerate(prompts):
prompt_to_int[prompt] = i
int_to_prompt[i] = prompt
if cfg.START_FROM_CHECKPOINT:
best_net = read_python_file("initial_net.py")
init_gen = 4
print(f"Starting from the following network:\n{best_net}")
else:
init_net = read_python_file(os.path.normpath(f"{cfg.SAVE_DIR}/initial_net.py"))
init_gen = 0
print(f"Starting from the following network:\n{init_net}")
# create the CVT
params = cm.default_params
c = cm.cvt(cfg.N_NICHES,cfg.DIM_MAP,
params['cvt_samples'], params['cvt_use_cache'])
kdt = KDTree(c, leaf_size=30, metric='euclidean')
cm.__write_centroids(c)
prompt_archive = {} # init archive (empty)
nets_archive = {}
n_evals = 0 # number of evaluations since the beginning
b_evals = 0 # number evaluation since the last dump
curios_net_path = os.path.normpath(f"{cfg.SAVE_DIR}/initial_net.py")
c_net_str = read_python_file(curios_net_path)
Net = get_class(curios_net_path)
curios_net = Net()
curios_prompt = prompts[0]
# main loop
temperature_start = 0.6
prev_best_score = np.inf
prev_best_net_path = None
prev_best_prompt = None
exp_name = f"gen-nets_{cfg.MUTATION}_networks-{cfg.NUM_NETS}_temp-{cfg.TEMPERATURE}_net-training-epochs-{cfg.NET_TRAINING_EPOCHS}_niches-{cfg.N_NICHES}_infer-and-flops-as-bd"
path_nets = f"{cfg.SAVE_DIR}/logs/{exp_name}"
os.makedirs(path_nets,exist_ok=True)
log_file = open(os.path.normpath(f"{path_nets}/cvt.dat"),"w")
out_file = os.path.normpath(f"{path_nets}/exp_results.csv")
csv_writer(["generations", "best_loss", "used_prompt"],out_file)
for gen_i in range(init_gen, cfg.GENERATIONS):
generated_nets = []
# random initialization
(print(f"[Generation: {gen_i}]"))
if (len(nets_archive.keys()) < cfg.RANDOM_INIT_NETS) and (len(prompt_archive.keys()) < (int(cfg.RANDOM_INIT_NETS*2))):#params['random_init'] * n_niches:
for _i in range(cfg.ROLL_OUTS):
selected_prompts = []
generated_net_results = []
selected_prompts = random.choices(prompts, weights=probabilities,k=cfg.INIT_NUM_NETS)
for i in range(0, cfg.INIT_NUM_NETS):
print(f"Selected prompt for generations: {selected_prompts[i]}")
for prompt in selected_prompts:
generated_net_results.append(mutation_fn.remote(cfg=cfg, prompt=init_net + "\n" + prompt, temperature=temperature_start))
for i,generated_net in enumerate(generated_net_results):
generated_nets.append((ray.get(generated_net),selected_prompts[i],temperature_start))
else: # variation/selection loop
evo_operator = random.choices(["mutation","crossover"], weights=[0.85,0.15])[0]
print(f"Performing {evo_operator}")
for _i in range(cfg.ROLL_OUTS):
generated_net_results = []
if evo_operator == "mutation":
if len(nets_archive.keys()) < 3:
n_nets = 1
selection = 0
else:
n_nets = 3
selection = random.randint(0, 2)
curios_nets = []
curios_prompts = []
curios_temps = []
curios_net_paths = []
n_curios_nets = get_max_fitness(nets_archive.values(),n_nets)
for n in n_curios_nets:
curios_nets.append(n.x)
curios_net_paths.append(n.net_path)
n_prompts_temps = get_max_curiosity(prompt_archive.values(),n_nets)
for pt in n_prompts_temps:
curios_prompts.append(pt.desc[0])
curios_temps.append(pt.desc[1])
curios_net = curios_nets[selection]
curios_temp = curios_temps[selection]
curios_net_path = curios_net_paths[selection]
curios_temp_ray = []
curios_prompt_ray = []
for i in range(cfg.NUM_NETS):
# Temperature mutation
if i == 1:
curios_temp = curios_temps[selection]
else:
curios_temp += random.uniform(-0.1,0.1)
if curios_temp > 1.0:
curios_temp = 1.0
elif curios_temp < 0.1:
curios_temp = 0.1
curios_prompt = curios_prompts[selection]
curios_temp_ray.append(curios_temp)
curios_prompt_ray.append(curios_prompt)
print(f"prompt in mutation is {curios_prompt}")
for i in range(cfg.NUM_NETS):
generated_net_results.append(mutation_fn.remote(cfg=cfg, prompt=read_python_file(curios_net_path) + "\n" + int_to_prompt[int(curios_prompt_ray[i])], temperature = curios_temp_ray[i]))
for i,generated_net in enumerate(generated_net_results):
generated_nets.append((ray.get(generated_net),int_to_prompt[int(curios_prompt_ray[i])],curios_temp_ray[i]))
elif evo_operator == "crossover":
if len(nets_archive.keys()) < 1:
print("No crossover performed")
else:
curios_nets_ray = []
curios_temps_ray = []
curios_nets = []
curios_prompts = []
curios_temps = []
curios_net_paths = []
if len(nets_archive.keys()) < 2:
selection = 0
n_nets = 1
else:
selection = random.randint(1, len(nets_archive.keys())-1)# change it to 1
n_nets = 2
n_curios_nets = get_max_fitness(nets_archive.values(),n_nets)
for n in n_curios_nets:
curios_nets.append(n.x)
curios_net_paths.append(n.net_path)
n_prompts_temps = get_max_curiosity(prompt_archive.values(),n_nets)
for pt in n_prompts_temps:
curios_prompts.append(pt.desc[0])
curios_temps.append(pt.desc[1])
for i in range(0, cfg.NUM_NETS):
curios_net_str = read_python_file(curios_net_paths[0])
curios_net = curios_nets[0]
curios_temp = curios_temps[0]
curios_prompt = curios_prompts[0]
curios_nets_ray.append(read_python_file(curios_net_paths[selection]))
crossover_prompt = '"""Combine the above two neural networks and create a third neural network class that also inherits from nn.Module"""'
for curios_2nd_net in curios_nets_ray:
generated_net_results.append(mutation_fn.remote(cfg=cfg, prompt=curios_net_str + "\n" + curios_2nd_net + "\n" + crossover_prompt, temperature = curios_temp))
for i,generated_net in enumerate(generated_net_results):
generated_nets.append((ray.get(generated_net),int_to_prompt[int(curios_prompt)],curios_temp))
net_class_name = None
net_paths=[]
training_prompts=[]
training_nets=[]
for i, k in enumerate(generated_nets):
invalid_net = False
generation, prompt, temperature = k
net_path = os.path.normpath(f"{path_nets}/network_{gen_i}_{i}_{prompt[3:-3]}_{temperature}.py")
if cfg.MUTATION == "codex":
extract_code_section(generation['choices'][0]["text"], prompt, file_path=net_path)
elif cfg.MUTATION.startswith("codegen"):
extract_code_section(generation, prompt, file_path=net_path)
main_net_focus = read_python_file(net_path)
print(f"Net in focus:\n {main_net_focus}")
if not invalid_net:
try:
Net = get_class(net_path)
net = Net()
except Exception as e:
net = curios_net
net_path = curios_net_path
if isinstance(curios_prompt,str):
prompt = curios_prompt
elif isinstance(curios_prompt,float) or isinstance(curios_prompt,int):
prompt = int_to_prompt[int(curios_prompt)]
#breakpoint()
try:
is_t = is_trainable(net)
except Exception:
is_t = False
if is_t:
net_paths.append(net_path)
training_prompts.append(prompt)
training_nets.append(net)
else:
invalid_net = True
if invalid_net:
print(f"The network at {net_path} is not trainable")
if training_nets == []:
continue
if (len(nets_archive.keys()) < cfg.RANDOM_INIT_NETS) and (len(prompt_archive.keys()) < (int(cfg.RANDOM_INIT_NETS*2))):
inter_results = []
losses = []
layers_c_net = detect_layers(curios_net)
if cfg.DEVICE == "cpu":
for net in training_nets:
for layer in layers_c_net:
try:
net = transfer_weights(curios_net,net,layer)
print(f"Weights transferred successfully")
except Exception:
print("Weights can not transfer")
for net in training_nets:
inter_results.append(forward_pass_on_gpu.remote(net))
elif cfg.DEVICE == "cuda":
for net in training_nets:
for layer in layers_c_net:
try:
net = transfer_weights(curios_net,net,layer)
print(f"Weights transferred successfully")
except Exception:
print("Weights can not transfer")
for net in training_nets:
inter_results.append(forward_pass_on_gpu.remote(net))
else:
raise ValueError(f"{cfg.DEVICE} is not a valid device")
fitness = []
for i,result in enumerate(inter_results):
try:
res = ray.get(result)
fitness.append([res[0],training_prompts[i],temperature,net_paths[i],res[1]])
if fitness[i][0] <= prev_best_score:
prev_best_net_path = net_paths[i]
prev_best_prompt = training_prompts[i]
prev_best_score = fitness[i][0]
temperature += 0.05
else:
temperature -= 0.05
if temperature > 1.0:
temperature = 1.0
elif temperature < 0.1:
temperature = 0.1
fitness[i][2] = temperature
except Exception:
print("not trainable due to fitness 1")
else:
if cfg.RAY:
inter_results = []
losses = []
layers_c_net = detect_layers(curios_net)
if cfg.DEVICE == "cpu":
for net in training_nets:
for layer in layers_c_net:
try:
net = transfer_weights(curios_net,net,layer)
print(f"Weights transferred successfully")
except Exception:
print("Weights can not transfer")
for net in training_nets:
inter_results.append(train_net_on_cpu.remote(net,cfg.NET_TRAINING_EPOCHS))
elif cfg.DEVICE == "both":
for i, net in enumerate(training_nets):
if i % 2 == 0:
inter_results.append(train_net_on_cpu.remote(net,cfg.NET_TRAINING_EPOCHS))
else:
inter_results.append(train_net_on_gpu.remote(net,cfg.NET_TRAINING_EPOCHS))
elif cfg.DEVICE == "cuda":
for net in training_nets:
for layer in layers_c_net:
try:
net = transfer_weights(curios_net,net,layer)
print(f"Weights transferred successfully")
except Exception:
print("Weights can not transfer")
for net in training_nets:
inter_results.append(train_net_on_gpu.remote(net,cfg.NET_TRAINING_EPOCHS))
else:
raise ValueError(f"{cfg.DEVICE} is not a valid device")
fitness = []
for i,result in enumerate(inter_results):
try:
fitness.append([ray.get(result),training_prompts[i],temperature,net_paths[i],0.0])
if fitness[i][0] <= prev_best_score:
prev_best_net_path = net_paths[i]
prev_best_prompt = training_prompts[i]
prev_best_score = fitness[i][0]
temperature += 0.05
else:
temperature -= 0.05
if temperature > 1.0:
temperature = 1.0
elif temperature < 0.1:
temperature = 0.1
fitness[i][2] = temperature
except Exception:
print("not trainable due to fitness 2")
try:
infer_results = []
for net in training_nets:
infer_results.append(forward_pass_on_gpu.remote(net))
for i,result in enumerate(infer_results):
try:
res = ray.get(result)
fitness[i][4] = res[1]
except Exception:
print("not trainable due to inference speed 1")
except Exception:
print("not trainable due to inference speed 2")
dummy_inputs = torch.zeros((1, 3, 32, 32))
net_beh_list = []
prompt_beh_list = []
for loss_x,prompt_x,temp_x,net_p,infer_speed in fitness:
_nn = read_python_file(net_p) #Avoiding sytax errors
Net = get_class(net_p)
net = Net()
try:
flps = FlopCountAnalysis(net, dummy_inputs)
flops = flps.total()
depth_width_ratio = get_network_width_depth_ratio(net)
except Exception:
try:
flps = FlopCountAnalysis(curios_net, dummy_inputs)
flops = flps.total()
depth_width_ratio = get_network_width_depth_ratio(curios_net)
except Exception:
flops = 0
depth_width_ratio = 1
print(f"flops, infer_speed, depth_width_ratio: {flops}, {infer_speed}, {depth_width_ratio}")
s_net = to_specie(net,loss_x,np.array([depth_width_ratio, flops]),net_p)
net_added = __add_to_archive(s_net, s_net.desc, nets_archive, kdt, type_ind = "network")
if net_added:
prompt_fit = 1.0
else:
prompt_fit = 0.0
s_prompt = to_specie(net,prompt_fit,np.array([prompt_to_int[prompt_x], temp_x]),net_p)
prompt_added = __add_to_archive(s_prompt, s_prompt.desc, prompt_archive, kdt, type_ind = "prompt")
if not net_added:
s_prompt.curiosity = s_prompt.curiosity - 0.5
elif net_added:
s_prompt.curiosity = s_prompt.curiosity + 1.0
if gen_i % 1 == 0:
cm.__save_archive(nets_archive, gen_i,name="net")
cm.__save_archive(prompt_archive, gen_i,name="prompt")
# write log
if log_file != None:
fit_list = np.array([x.fitness for x in nets_archive.values()])
log_file.write("{} {} {} {} {} {} {}\n".format(gen_i, len(nets_archive.keys()), len(prompt_archive.keys()),
fit_list.min(), np.mean(fit_list), np.median(fit_list),
np.percentile(fit_list, 5), np.percentile(fit_list, 95)))
log_file.flush()
cm.__save_archive(nets_archive, gen_i,name="net")
cm.__save_archive(prompt_archive, gen_i,name="prompt")
return nets_archive,prompt_archive
if __name__ == "__main__":
main()
|