Spaces:
No application file
No application file
File size: 7,523 Bytes
d625688 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
#! /usr/bin/env python
#| This file is a part of the pymap_elites framework.
#| Copyright 2019, INRIA
#| Main contributor(s):
#| Jean-Baptiste Mouret, [email protected]
#| Eloise Dalin , [email protected]
#| Pierre Desreumaux , [email protected]
#|
#|
#| **Main paper**: Mouret JB, Clune J. Illuminating search spaces by
#| mapping elites. arXiv preprint arXiv:1504.04909. 2015 Apr 20.
#|
#| This software is governed by the CeCILL license under French law
#| and abiding by the rules of distribution of free software. You
#| can use, modify and/ or redistribute the software under the terms
#| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
#| following URL "http://www.cecill.info".
#|
#| As a counterpart to the access to the source code and rights to
#| copy, modify and redistribute granted by the license, users are
#| provided only with a limited warranty and the software's author,
#| the holder of the economic rights, and the successive licensors
#| have only limited liability.
#|
#| In this respect, the user's attention is drawn to the risks
#| associated with loading, using, modifying and/or developing or
#| reproducing the software by the user in light of its specific
#| status of free software, that may mean that it is complicated to
#| manipulate, and that also therefore means that it is reserved for
#| developers and experienced professionals having in-depth computer
#| knowledge. Users are therefore encouraged to load and test the
#| software's suitability as regards their requirements in conditions
#| enabling the security of their systems and/or data to be ensured
#| and, more generally, to use and operate it in the same conditions
#| as regards security.
#|
#| The fact that you are presently reading this means that you have
#| had knowledge of the CeCILL license and that you accept its terms.
#
import math
import numpy as np
import multiprocessing
from pathlib import Path
import sys
import random
from collections import defaultdict
from sklearn.cluster import KMeans
default_params = \
{
# more of this -> higher-quality CVT
"cvt_samples": 25000,
# we evaluate in batches to paralleliez
"batch_size": 100,
# proportion of niches to be filled before starting
"random_init": 0.1,
# batch for random initialization
"random_init_batch": 100,
# when to write results (one generation = one batch)
"dump_period": 10000,
# do we use several cores?
"parallel": True,
# do we cache the result of CVT and reuse?
"cvt_use_cache": True,
# min/max of parameters
"min": 0,
"max": 1,
# only useful if you use the 'iso_dd' variation operator
"iso_sigma": 0.01,
"line_sigma": 0.2
}
class Species:
def __init__(self, x, desc, fitness, net_path, centroid=None):
self.x = x
self.desc = desc
self.fitness = fitness
self.centroid = centroid
self.curiosity = 0
self.net_path = net_path
def polynomial_mutation(x):
'''
Cf Deb 2001, p 124 ; param: eta_m
'''
y = x.copy()
eta_m = 5.0;
r = np.random.random(size=len(x))
for i in range(0, len(x)):
if r[i] < 0.5:
delta_i = math.pow(2.0 * r[i], 1.0 / (eta_m + 1.0)) - 1.0
else:
delta_i = 1 - math.pow(2.0 * (1.0 - r[i]), 1.0 / (eta_m + 1.0))
y[i] += delta_i
return y
def sbx(x, y, params):
'''
SBX (cf Deb 2001, p 113) Simulated Binary Crossover
A large value ef eta gives a higher probablitity for
creating a `near-parent' solutions and a small value allows
distant solutions to be selected as offspring.
'''
eta = 10.0
xl = params['min']
xu = params['max']
z = x.copy()
r1 = np.random.random(size=len(x))
r2 = np.random.random(size=len(x))
for i in range(0, len(x)):
if abs(x[i] - y[i]) > 1e-15:
x1 = min(x[i], y[i])
x2 = max(x[i], y[i])
beta = 1.0 + (2.0 * (x1 - xl) / (x2 - x1))
alpha = 2.0 - beta ** -(eta + 1)
rand = r1[i]
if rand <= 1.0 / alpha:
beta_q = (rand * alpha) ** (1.0 / (eta + 1))
else:
beta_q = (1.0 / (2.0 - rand * alpha)) ** (1.0 / (eta + 1))
c1 = 0.5 * (x1 + x2 - beta_q * (x2 - x1))
beta = 1.0 + (2.0 * (xu - x2) / (x2 - x1))
alpha = 2.0 - beta ** -(eta + 1)
if rand <= 1.0 / alpha:
beta_q = (rand * alpha) ** (1.0 / (eta + 1))
else:
beta_q = (1.0 / (2.0 - rand * alpha)) ** (1.0 / (eta + 1))
c2 = 0.5 * (x1 + x2 + beta_q * (x2 - x1))
c1 = min(max(c1, xl), xu)
c2 = min(max(c2, xl), xu)
if r2[i] <= 0.5:
z[i] = c2
else:
z[i] = c1
return z
def iso_dd(x, y, params):
'''
Iso+Line
Ref:
Vassiliades V, Mouret JB. Discovering the elite hypervolume by leveraging interspecies correlation.
GECCO 2018
'''
assert(x.shape == y.shape)
p_max = np.array(params["max"])
p_min = np.array(params["min"])
a = np.random.normal(0, params['iso_sigma'], size=len(x))
b = np.random.normal(0, params['line_sigma'])
norm = np.linalg.norm(x - y)
z = x.copy() + a + b * (x - y)
return np.clip(z, p_min, p_max)
def variation(x, z, params):
assert(x.shape == z.shape)
y = sbx(x, z, params)
return y
def __centroids_filename(k, dim):
return 'centroids_' + str(k) + '_' + str(dim) + '.dat'
def __write_centroids(centroids):
k = centroids.shape[0]
dim = centroids.shape[1]
filename = __centroids_filename(k, dim)
with open(filename, 'w') as f:
for p in centroids:
for item in p:
f.write(str(item) + ' ')
f.write('\n')
def cvt(k, dim, samples, cvt_use_cache=True):
# check if we have cached values
fname = __centroids_filename(k, dim)
if cvt_use_cache:
if Path(fname).is_file():
print("WARNING: using cached CVT:", fname)
return np.loadtxt(fname)
# otherwise, compute cvt
print("Computing CVT (this can take a while...):", fname)
x = np.random.rand(samples, dim)
k_means = KMeans(init='k-means++', n_clusters=k,
n_init=1, verbose=1)#,algorithm="full")
k_means.fit(x)
__write_centroids(k_means.cluster_centers_)
return k_means.cluster_centers_
def make_hashable(array):
return tuple(map(float, array))
def parallel_eval(evaluate_function, to_evaluate, pool, params):
if params['parallel'] == True:
s_list = pool.map(evaluate_function, to_evaluate)
else:
s_list = map(evaluate_function, to_evaluate)
return list(s_list)
# format: fitness, centroid, desc, genome \n
# fitness, centroid, desc and x are vectors
def __save_archive(archive, gen,name="net"):
def write_array(a, f):
for i in a:
f.write(str(i) + " ")
filename = name+'archive_' + str(gen) + '.dat'
with open(filename, 'w') as f:
for k in archive.values():
f.write(k.net_path + " ")
f.write(str(k.fitness) + ' ')
write_array(k.centroid, f)
f.write(str(k.curiosity) + " ")
f.write(str(k.desc[0]) + " ")
f.write(str(k.desc[1]) + " ")
#write_array(k.x, f)
f.write("\n")
|