File size: 7,294 Bytes
d625688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#! /usr/bin/env python
#| This file is a part of the pymap_elites framework.
#| Copyright 2019, INRIA
#| Main contributor(s):
#| Jean-Baptiste Mouret, [email protected]
#| Eloise Dalin , [email protected]
#| Pierre Desreumaux , [email protected]
#|
#|
#| **Main paper**: Mouret JB, Clune J. Illuminating search spaces by
#| mapping elites. arXiv preprint arXiv:1504.04909. 2015 Apr 20.
#|
#| This software is governed by the CeCILL license under French law
#| and abiding by the rules of distribution of free software.  You
#| can use, modify and/ or redistribute the software under the terms
#| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
#| following URL "http://www.cecill.info".
#|
#| As a counterpart to the access to the source code and rights to
#| copy, modify and redistribute granted by the license, users are
#| provided only with a limited warranty and the software's author,
#| the holder of the economic rights, and the successive licensors
#| have only limited liability.
#|
#| In this respect, the user's attention is drawn to the risks
#| associated with loading, using, modifying and/or developing or
#| reproducing the software by the user in light of its specific
#| status of free software, that may mean that it is complicated to
#| manipulate, and that also therefore means that it is reserved for
#| developers and experienced professionals having in-depth computer
#| knowledge. Users are therefore encouraged to load and test the
#| software's suitability as regards their requirements in conditions
#| enabling the security of their systems and/or data to be ensured
#| and, more generally, to use and operate it in the same conditions
#| as regards security.
#|
#| The fact that you are presently reading this means that you have
#| had knowledge of the CeCILL license and that you accept its terms.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from scipy.spatial import Voronoi, voronoi_plot_2d
import sys
from matplotlib.ticker import FuncFormatter
from sklearn.neighbors import KDTree
import matplotlib.cm as cm

my_cmap = cm.viridis

def voronoi_finite_polygons_2d(vor, radius=None):
    """
    Reconstruct infinite voronoi regions in a 2D diagram to finite
    regions.
    Source: https://stackoverflow.com/questions/20515554/colorize-voronoi-diagram/20678647#20678647

    Parameters
    ----------
    vor : Voronoi
        Input diagram
    radius : float, optional
        Distance to 'points at infinity'.

    Returns
    -------
    regions : list of tuples
        Indices of vertices in each revised Voronoi regions.
    vertices : list of tuples
        Coordinates for revised Voronoi vertices. Same as coordinates
        of input vertices, with 'points at infinity' appended to the
        end.

    """

    if vor.points.shape[1] != 2:
        raise ValueError("Requires 2D input")

    new_regions = []
    new_vertices = vor.vertices.tolist()

    center = vor.points.mean(axis=0)
    if radius is None:
        radius = vor.points.ptp().max()

    # Construct a map containing all ridges for a given point
    all_ridges = {}
    for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):
        all_ridges.setdefault(p1, []).append((p2, v1, v2))
        all_ridges.setdefault(p2, []).append((p1, v1, v2))

    # Reconstruct infinite regions
    for p1, region in enumerate(vor.point_region):
        vertices = vor.regions[region]

        if all(v >= 0 for v in vertices):
            # finite region
            new_regions.append(vertices)
            continue

        # reconstruct a non-finite region
        ridges = all_ridges[p1]
        new_region = [v for v in vertices if v >= 0]

        for p2, v1, v2 in ridges:
            if v2 < 0:
                v1, v2 = v2, v1
            if v1 >= 0:
                # finite ridge: already in the region
                continue

            # Compute the missing endpoint of an infinite ridge

            t = vor.points[p2] - vor.points[p1] # tangent
            t /= np.linalg.norm(t)
            n = np.array([-t[1], t[0]])  # normal

            midpoint = vor.points[[p1, p2]].mean(axis=0)
            direction = np.sign(np.dot(midpoint - center, n)) * n
            far_point = vor.vertices[v2] + direction * radius

            new_region.append(len(new_vertices))
            new_vertices.append(far_point.tolist())

        # sort region counterclockwise
        vs = np.asarray([new_vertices[v] for v in new_region])
        c = vs.mean(axis=0)
        angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])
        new_region = np.array(new_region)[np.argsort(angles)]

        # finish
        new_regions.append(new_region.tolist())

    return new_regions, np.asarray(new_vertices)


def load_data(filename, dim,dim_x):
    print("Loading ",filename)
    data = np.loadtxt(filename)
    fit = data[:, 0:1]
    desc = data[:,1: dim+1]
    x = data[:,dim+1:dim+1+dim_x]

    return fit, desc, x

def load_centroids(filename):
    points = np.loadtxt(filename)
    return points

def plot_cvt(ax, centroids, fit, desc, x,dim1,dim2, min_fit, max_fit):
    # compute Voronoi tesselation
    print("Voronoi...")
    vor = Voronoi(centroids[:,0:2])
    regions, vertices = voronoi_finite_polygons_2d(vor)
    print("fit:", min_fit, max_fit)
    norm = matplotlib.colors.Normalize(vmin=min_fit, vmax=max_fit)
    print("KD-Tree...")
    kdt = KDTree(centroids, leaf_size = 30, metric = 'euclidean')

    print("plotting contour...")
    #ax.scatter(centroids[:, 0], centroids[:,1], c=fit)
    # contours
    for i, region in enumerate(regions):
        polygon = vertices[region]
        ax.fill(*zip(*polygon), alpha=0.05, edgecolor='black', facecolor='white', lw=1)

    print("plotting data...")
    k = 0
    for i in range(0, len(desc)):
        q = kdt.query([desc[i]], k = 1)
        index = q[1][0][0]
        region = regions[index]
        polygon = vertices[region]
        ax.fill(*zip(*polygon), alpha=0.9, color=my_cmap(norm(fit[i]))[0])
        k += 1
        if k % 100 == 0:
            print(k, end=" ", flush=True)
    fit_reshaped = fit.reshape((len(fit),))
    sc = ax.scatter(desc[:,0], desc[:,1], c=fit_reshaped, cmap=my_cmap, s=10, zorder=0)

if __name__ == "__main__":
    if len(sys.argv) < 3:
        sys.exit('Usage: %s centroids_file archive.dat [min_fit] [max_fit]' % sys.argv[0])

    centroids = load_centroids(sys.argv[1])
    dim_x = 100
    fit, beh, x = load_data(sys.argv[2], centroids.shape[1], dim_x)
    print("Fitness max : ", max(fit))
    index = np.argmax(fit)
    print("Average fit:", fit.sum() / fit.shape[0])
    print("Associated desc : " , beh[index] )
    print("Associated ctrl : " , x[index] )
    print("Index : ", index)
    print("total len ",len(fit))

    if len(sys.argv) > 3:
        min_fit = float(sys.argv[3])
        max_fit = float(sys.argv[4])
    else:
        min_fit = min(fit)
        max_fit = max(fit)
    print("Min = {} Max={}".format(min_fit, max_fit))
    # Plot
    fig, axes = plt.subplots(1, 1, figsize=(10, 10), facecolor='white', edgecolor='white')
    axes.set_xlim(0, 1)
    axes.set_ylim(0, 1)
    plot_cvt(axes, centroids, fit, beh, x,2,4, min_fit, max_fit)
    fig.savefig('cvt.pdf')
    fig.savefig('cvt.png')