Spaces:
No application file
No application file
File size: 7,294 Bytes
d625688 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
#! /usr/bin/env python
#| This file is a part of the pymap_elites framework.
#| Copyright 2019, INRIA
#| Main contributor(s):
#| Jean-Baptiste Mouret, [email protected]
#| Eloise Dalin , [email protected]
#| Pierre Desreumaux , [email protected]
#|
#|
#| **Main paper**: Mouret JB, Clune J. Illuminating search spaces by
#| mapping elites. arXiv preprint arXiv:1504.04909. 2015 Apr 20.
#|
#| This software is governed by the CeCILL license under French law
#| and abiding by the rules of distribution of free software. You
#| can use, modify and/ or redistribute the software under the terms
#| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
#| following URL "http://www.cecill.info".
#|
#| As a counterpart to the access to the source code and rights to
#| copy, modify and redistribute granted by the license, users are
#| provided only with a limited warranty and the software's author,
#| the holder of the economic rights, and the successive licensors
#| have only limited liability.
#|
#| In this respect, the user's attention is drawn to the risks
#| associated with loading, using, modifying and/or developing or
#| reproducing the software by the user in light of its specific
#| status of free software, that may mean that it is complicated to
#| manipulate, and that also therefore means that it is reserved for
#| developers and experienced professionals having in-depth computer
#| knowledge. Users are therefore encouraged to load and test the
#| software's suitability as regards their requirements in conditions
#| enabling the security of their systems and/or data to be ensured
#| and, more generally, to use and operate it in the same conditions
#| as regards security.
#|
#| The fact that you are presently reading this means that you have
#| had knowledge of the CeCILL license and that you accept its terms.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from scipy.spatial import Voronoi, voronoi_plot_2d
import sys
from matplotlib.ticker import FuncFormatter
from sklearn.neighbors import KDTree
import matplotlib.cm as cm
my_cmap = cm.viridis
def voronoi_finite_polygons_2d(vor, radius=None):
"""
Reconstruct infinite voronoi regions in a 2D diagram to finite
regions.
Source: https://stackoverflow.com/questions/20515554/colorize-voronoi-diagram/20678647#20678647
Parameters
----------
vor : Voronoi
Input diagram
radius : float, optional
Distance to 'points at infinity'.
Returns
-------
regions : list of tuples
Indices of vertices in each revised Voronoi regions.
vertices : list of tuples
Coordinates for revised Voronoi vertices. Same as coordinates
of input vertices, with 'points at infinity' appended to the
end.
"""
if vor.points.shape[1] != 2:
raise ValueError("Requires 2D input")
new_regions = []
new_vertices = vor.vertices.tolist()
center = vor.points.mean(axis=0)
if radius is None:
radius = vor.points.ptp().max()
# Construct a map containing all ridges for a given point
all_ridges = {}
for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):
all_ridges.setdefault(p1, []).append((p2, v1, v2))
all_ridges.setdefault(p2, []).append((p1, v1, v2))
# Reconstruct infinite regions
for p1, region in enumerate(vor.point_region):
vertices = vor.regions[region]
if all(v >= 0 for v in vertices):
# finite region
new_regions.append(vertices)
continue
# reconstruct a non-finite region
ridges = all_ridges[p1]
new_region = [v for v in vertices if v >= 0]
for p2, v1, v2 in ridges:
if v2 < 0:
v1, v2 = v2, v1
if v1 >= 0:
# finite ridge: already in the region
continue
# Compute the missing endpoint of an infinite ridge
t = vor.points[p2] - vor.points[p1] # tangent
t /= np.linalg.norm(t)
n = np.array([-t[1], t[0]]) # normal
midpoint = vor.points[[p1, p2]].mean(axis=0)
direction = np.sign(np.dot(midpoint - center, n)) * n
far_point = vor.vertices[v2] + direction * radius
new_region.append(len(new_vertices))
new_vertices.append(far_point.tolist())
# sort region counterclockwise
vs = np.asarray([new_vertices[v] for v in new_region])
c = vs.mean(axis=0)
angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])
new_region = np.array(new_region)[np.argsort(angles)]
# finish
new_regions.append(new_region.tolist())
return new_regions, np.asarray(new_vertices)
def load_data(filename, dim,dim_x):
print("Loading ",filename)
data = np.loadtxt(filename)
fit = data[:, 0:1]
desc = data[:,1: dim+1]
x = data[:,dim+1:dim+1+dim_x]
return fit, desc, x
def load_centroids(filename):
points = np.loadtxt(filename)
return points
def plot_cvt(ax, centroids, fit, desc, x,dim1,dim2, min_fit, max_fit):
# compute Voronoi tesselation
print("Voronoi...")
vor = Voronoi(centroids[:,0:2])
regions, vertices = voronoi_finite_polygons_2d(vor)
print("fit:", min_fit, max_fit)
norm = matplotlib.colors.Normalize(vmin=min_fit, vmax=max_fit)
print("KD-Tree...")
kdt = KDTree(centroids, leaf_size = 30, metric = 'euclidean')
print("plotting contour...")
#ax.scatter(centroids[:, 0], centroids[:,1], c=fit)
# contours
for i, region in enumerate(regions):
polygon = vertices[region]
ax.fill(*zip(*polygon), alpha=0.05, edgecolor='black', facecolor='white', lw=1)
print("plotting data...")
k = 0
for i in range(0, len(desc)):
q = kdt.query([desc[i]], k = 1)
index = q[1][0][0]
region = regions[index]
polygon = vertices[region]
ax.fill(*zip(*polygon), alpha=0.9, color=my_cmap(norm(fit[i]))[0])
k += 1
if k % 100 == 0:
print(k, end=" ", flush=True)
fit_reshaped = fit.reshape((len(fit),))
sc = ax.scatter(desc[:,0], desc[:,1], c=fit_reshaped, cmap=my_cmap, s=10, zorder=0)
if __name__ == "__main__":
if len(sys.argv) < 3:
sys.exit('Usage: %s centroids_file archive.dat [min_fit] [max_fit]' % sys.argv[0])
centroids = load_centroids(sys.argv[1])
dim_x = 100
fit, beh, x = load_data(sys.argv[2], centroids.shape[1], dim_x)
print("Fitness max : ", max(fit))
index = np.argmax(fit)
print("Average fit:", fit.sum() / fit.shape[0])
print("Associated desc : " , beh[index] )
print("Associated ctrl : " , x[index] )
print("Index : ", index)
print("total len ",len(fit))
if len(sys.argv) > 3:
min_fit = float(sys.argv[3])
max_fit = float(sys.argv[4])
else:
min_fit = min(fit)
max_fit = max(fit)
print("Min = {} Max={}".format(min_fit, max_fit))
# Plot
fig, axes = plt.subplots(1, 1, figsize=(10, 10), facecolor='white', edgecolor='white')
axes.set_xlim(0, 1)
axes.set_ylim(0, 1)
plot_cvt(axes, centroids, fit, beh, x,2,4, min_fit, max_fit)
fig.savefig('cvt.pdf')
fig.savefig('cvt.png')
|