import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 1, 1, bias=False) self.conv2 = nn.Conv2d(3, 1, 1, bias=False) self.fc1 = nn.Linear(1024, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = torch.flatten(x, 1) x = F.relu(self.fc1(x)) return x net = Net() def is_trainable(net): zeros = torch.zeros((1, 3, 32, 32)) # input tensor of shape (batch_size, channels, height, width) # Check that we can pass a dummy input through the network without errors. try: output = net(zeros) except Exception as e: return False # Network output shape must match number of classes in CIFAR-10. if output.shape != (1, 10): return False return True def main(): print(is_trainable(net)) if __name__ == '__main__': main()