Ahmed0011 commited on
Commit
499ffe6
·
verified ·
1 Parent(s): a1b868a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +174 -1
app.py CHANGED
@@ -1,3 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import edge_tts
3
  import asyncio
@@ -167,4 +339,5 @@ with gr.Blocks(theme=theme) as demo:
167
  gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
168
 
169
  if __name__ == "__main__":
170
- demo.queue(max_size=200).launch()
 
 
1
+ # import gradio as gr
2
+ # import edge_tts
3
+ # import asyncio
4
+ # import tempfile
5
+ # import numpy as np
6
+ # import soxr
7
+ # from pydub import AudioSegment
8
+ # import torch
9
+ # import sentencepiece as spm
10
+ # import onnxruntime as ort
11
+ # from huggingface_hub import hf_hub_download, InferenceClient
12
+ # import requests
13
+ # from bs4 import BeautifulSoup
14
+ # import urllib
15
+ # import random
16
+
17
+ # theme = gr.themes.Soft(
18
+ # primary_hue="blue",
19
+ # secondary_hue="orange")
20
+
21
+
22
+ # # List of user agents to choose from for requests
23
+ # _useragent_list = [
24
+ # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
25
+ # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
26
+ # 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
27
+ # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
28
+ # 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
29
+ # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
30
+ # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
31
+ # ]
32
+
33
+ # def get_useragent():
34
+ # """Returns a random user agent from the list."""
35
+ # return random.choice(_useragent_list)
36
+
37
+ # def extract_text_from_webpage(html_content):
38
+ # """Extracts visible text from HTML content using BeautifulSoup."""
39
+ # soup = BeautifulSoup(html_content, "html.parser")
40
+ # # Remove unwanted tags
41
+ # for tag in soup(["script", "style", "header", "footer", "nav"]):
42
+ # tag.extract()
43
+ # # Get the remaining visible text
44
+ # visible_text = soup.get_text(strip=True)
45
+ # return visible_text
46
+
47
+ # def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
48
+ # """Performs a Google search and returns the results."""
49
+ # escaped_term = urllib.parse.quote_plus(term)
50
+ # start = 0
51
+ # all_results = []
52
+
53
+ # # Fetch results in batches
54
+ # while start < num_results:
55
+ # resp = requests.get(
56
+ # url="https://www.google.com/search",
57
+ # headers={"User-Agent": get_useragent()}, # Set random user agent
58
+ # params={
59
+ # "q": term,
60
+ # "num": num_results - start, # Number of results to fetch in this batch
61
+ # "hl": lang,
62
+ # "start": start,
63
+ # "safe": safe,
64
+ # },
65
+ # timeout=timeout,
66
+ # verify=ssl_verify,
67
+ # )
68
+ # resp.raise_for_status() # Raise an exception if request fails
69
+
70
+ # soup = BeautifulSoup(resp.text, "html.parser")
71
+ # result_block = soup.find_all("div", attrs={"class": "g"})
72
+
73
+ # # If no results, continue to the next batch
74
+ # if not result_block:
75
+ # start += 1
76
+ # continue
77
+
78
+ # # Extract link and text from each result
79
+ # for result in result_block:
80
+ # link = result.find("a", href=True)
81
+ # if link:
82
+ # link = link["href"]
83
+ # try:
84
+ # # Fetch webpage content
85
+ # webpage = requests.get(link, headers={"User-Agent": get_useragent()})
86
+ # webpage.raise_for_status()
87
+ # # Extract visible text from webpage
88
+ # visible_text = extract_text_from_webpage(webpage.text)
89
+ # all_results.append({"link": link, "text": visible_text})
90
+ # except requests.exceptions.RequestException as e:
91
+ # # Handle errors fetching or processing webpage
92
+ # print(f"Error fetching or processing {link}: {e}")
93
+ # all_results.append({"link": link, "text": None})
94
+ # else:
95
+ # all_results.append({"link": None, "text": None})
96
+
97
+ # start += len(result_block) # Update starting index for next batch
98
+
99
+ # return all_results
100
+
101
+ # # Speech Recognition Model Configuration
102
+ # model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
103
+ # sample_rate = 16000
104
+
105
+ # # Download preprocessor, encoder and tokenizer
106
+ # preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
107
+ # encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
108
+ # tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
109
+
110
+ # # Mistral Model Configuration
111
+ # client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
112
+ # system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
113
+
114
+ # def resample(audio_fp32, sr):
115
+ # return soxr.resample(audio_fp32, sr, sample_rate)
116
+
117
+ # def to_float32(audio_buffer):
118
+ # return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
119
+
120
+ # def transcribe(audio_path):
121
+ # audio_file = AudioSegment.from_file(audio_path)
122
+ # sr = audio_file.frame_rate
123
+ # audio_buffer = np.array(audio_file.get_array_of_samples())
124
+
125
+ # audio_fp32 = to_float32(audio_buffer)
126
+ # audio_16k = resample(audio_fp32, sr)
127
+
128
+ # input_signal = torch.tensor(audio_16k).unsqueeze(0)
129
+ # length = torch.tensor(len(audio_16k)).unsqueeze(0)
130
+ # processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
131
+
132
+ # logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
133
+
134
+ # blank_id = tokenizer.vocab_size()
135
+ # decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
136
+ # text = tokenizer.decode_ids(decoded_prediction)
137
+
138
+ # return text
139
+
140
+ # def model(text, web_search):
141
+ # if web_search is True:
142
+ # """Performs a web search, feeds the results to a language model, and returns the answer."""
143
+ # web_results = search(text)
144
+ # web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
145
+ # formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
146
+ # stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
147
+ # return "".join([response.token.text for response in stream if response.token.text != "</s>"])
148
+ # else:
149
+ # formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
150
+ # stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
151
+ # return "".join([response.token.text for response in stream if response.token.text != "</s>"])
152
+
153
+ # async def respond(audio, web_search):
154
+ # user = transcribe(audio)
155
+ # reply = model(user, web_search)
156
+ # communicate = edge_tts.Communicate(reply)
157
+ # with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
158
+ # tmp_path = tmp_file.name
159
+ # await communicate.save(tmp_path)
160
+ # return tmp_path
161
+
162
+ # with gr.Blocks(theme=theme) as demo:
163
+ # with gr.Row():
164
+ # web_search = gr.Checkbox(label="Web Search", value=False)
165
+ # input = gr.Audio(label="User Input", sources="microphone", type="filepath")
166
+ # output = gr.Audio(label="AI", autoplay=True)
167
+ # gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
168
+
169
+ # if __name__ == "__main__":
170
+ # demo.queue(max_size=200).launch()
171
+
172
+
173
  import gradio as gr
174
  import edge_tts
175
  import asyncio
 
339
  gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
340
 
341
  if __name__ == "__main__":
342
+ demo.queue(max_size=200).launch()
343
+