Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import edge_tts
|
3 |
import asyncio
|
@@ -167,4 +339,5 @@ with gr.Blocks(theme=theme) as demo:
|
|
167 |
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
|
168 |
|
169 |
if __name__ == "__main__":
|
170 |
-
demo.queue(max_size=200).launch()
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import edge_tts
|
3 |
+
# import asyncio
|
4 |
+
# import tempfile
|
5 |
+
# import numpy as np
|
6 |
+
# import soxr
|
7 |
+
# from pydub import AudioSegment
|
8 |
+
# import torch
|
9 |
+
# import sentencepiece as spm
|
10 |
+
# import onnxruntime as ort
|
11 |
+
# from huggingface_hub import hf_hub_download, InferenceClient
|
12 |
+
# import requests
|
13 |
+
# from bs4 import BeautifulSoup
|
14 |
+
# import urllib
|
15 |
+
# import random
|
16 |
+
|
17 |
+
# theme = gr.themes.Soft(
|
18 |
+
# primary_hue="blue",
|
19 |
+
# secondary_hue="orange")
|
20 |
+
|
21 |
+
|
22 |
+
# # List of user agents to choose from for requests
|
23 |
+
# _useragent_list = [
|
24 |
+
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
|
25 |
+
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
26 |
+
# 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
27 |
+
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
|
28 |
+
# 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
29 |
+
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
|
30 |
+
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
|
31 |
+
# ]
|
32 |
+
|
33 |
+
# def get_useragent():
|
34 |
+
# """Returns a random user agent from the list."""
|
35 |
+
# return random.choice(_useragent_list)
|
36 |
+
|
37 |
+
# def extract_text_from_webpage(html_content):
|
38 |
+
# """Extracts visible text from HTML content using BeautifulSoup."""
|
39 |
+
# soup = BeautifulSoup(html_content, "html.parser")
|
40 |
+
# # Remove unwanted tags
|
41 |
+
# for tag in soup(["script", "style", "header", "footer", "nav"]):
|
42 |
+
# tag.extract()
|
43 |
+
# # Get the remaining visible text
|
44 |
+
# visible_text = soup.get_text(strip=True)
|
45 |
+
# return visible_text
|
46 |
+
|
47 |
+
# def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
|
48 |
+
# """Performs a Google search and returns the results."""
|
49 |
+
# escaped_term = urllib.parse.quote_plus(term)
|
50 |
+
# start = 0
|
51 |
+
# all_results = []
|
52 |
+
|
53 |
+
# # Fetch results in batches
|
54 |
+
# while start < num_results:
|
55 |
+
# resp = requests.get(
|
56 |
+
# url="https://www.google.com/search",
|
57 |
+
# headers={"User-Agent": get_useragent()}, # Set random user agent
|
58 |
+
# params={
|
59 |
+
# "q": term,
|
60 |
+
# "num": num_results - start, # Number of results to fetch in this batch
|
61 |
+
# "hl": lang,
|
62 |
+
# "start": start,
|
63 |
+
# "safe": safe,
|
64 |
+
# },
|
65 |
+
# timeout=timeout,
|
66 |
+
# verify=ssl_verify,
|
67 |
+
# )
|
68 |
+
# resp.raise_for_status() # Raise an exception if request fails
|
69 |
+
|
70 |
+
# soup = BeautifulSoup(resp.text, "html.parser")
|
71 |
+
# result_block = soup.find_all("div", attrs={"class": "g"})
|
72 |
+
|
73 |
+
# # If no results, continue to the next batch
|
74 |
+
# if not result_block:
|
75 |
+
# start += 1
|
76 |
+
# continue
|
77 |
+
|
78 |
+
# # Extract link and text from each result
|
79 |
+
# for result in result_block:
|
80 |
+
# link = result.find("a", href=True)
|
81 |
+
# if link:
|
82 |
+
# link = link["href"]
|
83 |
+
# try:
|
84 |
+
# # Fetch webpage content
|
85 |
+
# webpage = requests.get(link, headers={"User-Agent": get_useragent()})
|
86 |
+
# webpage.raise_for_status()
|
87 |
+
# # Extract visible text from webpage
|
88 |
+
# visible_text = extract_text_from_webpage(webpage.text)
|
89 |
+
# all_results.append({"link": link, "text": visible_text})
|
90 |
+
# except requests.exceptions.RequestException as e:
|
91 |
+
# # Handle errors fetching or processing webpage
|
92 |
+
# print(f"Error fetching or processing {link}: {e}")
|
93 |
+
# all_results.append({"link": link, "text": None})
|
94 |
+
# else:
|
95 |
+
# all_results.append({"link": None, "text": None})
|
96 |
+
|
97 |
+
# start += len(result_block) # Update starting index for next batch
|
98 |
+
|
99 |
+
# return all_results
|
100 |
+
|
101 |
+
# # Speech Recognition Model Configuration
|
102 |
+
# model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
103 |
+
# sample_rate = 16000
|
104 |
+
|
105 |
+
# # Download preprocessor, encoder and tokenizer
|
106 |
+
# preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
|
107 |
+
# encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
|
108 |
+
# tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
109 |
+
|
110 |
+
# # Mistral Model Configuration
|
111 |
+
# client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
112 |
+
# system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
113 |
+
|
114 |
+
# def resample(audio_fp32, sr):
|
115 |
+
# return soxr.resample(audio_fp32, sr, sample_rate)
|
116 |
+
|
117 |
+
# def to_float32(audio_buffer):
|
118 |
+
# return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
|
119 |
+
|
120 |
+
# def transcribe(audio_path):
|
121 |
+
# audio_file = AudioSegment.from_file(audio_path)
|
122 |
+
# sr = audio_file.frame_rate
|
123 |
+
# audio_buffer = np.array(audio_file.get_array_of_samples())
|
124 |
+
|
125 |
+
# audio_fp32 = to_float32(audio_buffer)
|
126 |
+
# audio_16k = resample(audio_fp32, sr)
|
127 |
+
|
128 |
+
# input_signal = torch.tensor(audio_16k).unsqueeze(0)
|
129 |
+
# length = torch.tensor(len(audio_16k)).unsqueeze(0)
|
130 |
+
# processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
|
131 |
+
|
132 |
+
# logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
|
133 |
+
|
134 |
+
# blank_id = tokenizer.vocab_size()
|
135 |
+
# decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
|
136 |
+
# text = tokenizer.decode_ids(decoded_prediction)
|
137 |
+
|
138 |
+
# return text
|
139 |
+
|
140 |
+
# def model(text, web_search):
|
141 |
+
# if web_search is True:
|
142 |
+
# """Performs a web search, feeds the results to a language model, and returns the answer."""
|
143 |
+
# web_results = search(text)
|
144 |
+
# web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
145 |
+
# formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
|
146 |
+
# stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
147 |
+
# return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
148 |
+
# else:
|
149 |
+
# formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
|
150 |
+
# stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
151 |
+
# return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
152 |
+
|
153 |
+
# async def respond(audio, web_search):
|
154 |
+
# user = transcribe(audio)
|
155 |
+
# reply = model(user, web_search)
|
156 |
+
# communicate = edge_tts.Communicate(reply)
|
157 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
158 |
+
# tmp_path = tmp_file.name
|
159 |
+
# await communicate.save(tmp_path)
|
160 |
+
# return tmp_path
|
161 |
+
|
162 |
+
# with gr.Blocks(theme=theme) as demo:
|
163 |
+
# with gr.Row():
|
164 |
+
# web_search = gr.Checkbox(label="Web Search", value=False)
|
165 |
+
# input = gr.Audio(label="User Input", sources="microphone", type="filepath")
|
166 |
+
# output = gr.Audio(label="AI", autoplay=True)
|
167 |
+
# gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
|
168 |
+
|
169 |
+
# if __name__ == "__main__":
|
170 |
+
# demo.queue(max_size=200).launch()
|
171 |
+
|
172 |
+
|
173 |
import gradio as gr
|
174 |
import edge_tts
|
175 |
import asyncio
|
|
|
339 |
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
|
340 |
|
341 |
if __name__ == "__main__":
|
342 |
+
demo.queue(max_size=200).launch()
|
343 |
+
|