Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,12 @@ import requests
|
|
13 |
from bs4 import BeautifulSoup
|
14 |
import urllib
|
15 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# List of user agents to choose from for requests
|
18 |
_useragent_list = [
|
@@ -89,15 +95,20 @@ def search(term, num_results=3, lang="en", advanced=True, timeout=5, safe="activ
|
|
89 |
start += len(result_block)
|
90 |
return all_results
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Speech Recognition Model Configuration
|
93 |
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
94 |
sample_rate = 16000
|
95 |
|
96 |
-
# Download preprocessor, encoder and tokenizer
|
97 |
-
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
|
98 |
-
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
|
99 |
-
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
100 |
-
|
101 |
# Mistral Model Configuration
|
102 |
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
103 |
system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
@@ -109,6 +120,8 @@ def to_float32(audio_buffer):
|
|
109 |
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
|
110 |
|
111 |
def transcribe(audio_path):
|
|
|
|
|
112 |
audio_file = AudioSegment.from_file(audio_path)
|
113 |
sr = audio_file.frame_rate
|
114 |
audio_buffer = np.array(audio_file.get_array_of_samples())
|
@@ -128,34 +141,38 @@ def transcribe(audio_path):
|
|
128 |
|
129 |
return text
|
130 |
|
131 |
-
def
|
132 |
-
|
133 |
-
|
134 |
-
web_results = search
|
135 |
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
136 |
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[ANSWER]"
|
137 |
-
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
138 |
-
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
139 |
else:
|
140 |
formatted_prompt = system_instructions1 + text + "[JARVIS]"
|
141 |
-
|
142 |
-
|
143 |
|
144 |
-
async def
|
145 |
-
|
146 |
-
reply = model(user, web_search)
|
147 |
communicate = edge_tts.Communicate(reply)
|
148 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
149 |
tmp_path = tmp_file.name
|
150 |
await communicate.save(tmp_path)
|
151 |
return tmp_path
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
with gr.Blocks() as demo:
|
154 |
with gr.Row():
|
155 |
web_search = gr.Checkbox(label="Web Search", value=False)
|
156 |
-
input = gr.Audio(label="Voice Chat", sources="microphone")
|
157 |
output = gr.Audio(label="AI",autoplay=True)
|
158 |
-
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
demo.queue(max_size=200).launch()
|
|
|
13 |
from bs4 import BeautifulSoup
|
14 |
import urllib
|
15 |
import random
|
16 |
+
from functools import lru_cache
|
17 |
+
import concurrent.futures
|
18 |
+
|
19 |
+
# Configuration for concurrency
|
20 |
+
MAX_WORKERS = 4 # Adjust based on your system resources
|
21 |
+
executor = concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
22 |
|
23 |
# List of user agents to choose from for requests
|
24 |
_useragent_list = [
|
|
|
95 |
start += len(result_block)
|
96 |
return all_results
|
97 |
|
98 |
+
@lru_cache(maxsize=1) # Cache the models to avoid reloading
|
99 |
+
def load_speech_recognition_models():
|
100 |
+
"""Loads and caches speech recognition models."""
|
101 |
+
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
102 |
+
sample_rate = 16000
|
103 |
+
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
|
104 |
+
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
|
105 |
+
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
106 |
+
return preprocessor, encoder, tokenizer
|
107 |
+
|
108 |
# Speech Recognition Model Configuration
|
109 |
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
110 |
sample_rate = 16000
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
# Mistral Model Configuration
|
113 |
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
114 |
system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
|
|
120 |
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
|
121 |
|
122 |
def transcribe(audio_path):
|
123 |
+
"""Transcribes audio using cached models."""
|
124 |
+
preprocessor, encoder, tokenizer = load_speech_recognition_models()
|
125 |
audio_file = AudioSegment.from_file(audio_path)
|
126 |
sr = audio_file.frame_rate
|
127 |
audio_buffer = np.array(audio_file.get_array_of_samples())
|
|
|
141 |
|
142 |
return text
|
143 |
|
144 |
+
async def run_model(text, web_search):
|
145 |
+
"""Runs the language model asynchronously."""
|
146 |
+
if web_search:
|
147 |
+
web_results = await asyncio.get_event_loop().run_in_executor(executor, search, text) # Run search in executor
|
148 |
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
149 |
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[ANSWER]"
|
|
|
|
|
150 |
else:
|
151 |
formatted_prompt = system_instructions1 + text + "[JARVIS]"
|
152 |
+
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
153 |
+
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
154 |
|
155 |
+
async def generate_speech(reply):
|
156 |
+
"""Generates speech asynchronously."""
|
|
|
157 |
communicate = edge_tts.Communicate(reply)
|
158 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
159 |
tmp_path = tmp_file.name
|
160 |
await communicate.save(tmp_path)
|
161 |
return tmp_path
|
162 |
|
163 |
+
async def respond(audio, web_search):
|
164 |
+
"""Handles user input, model processing, and response generation."""
|
165 |
+
user = await asyncio.get_event_loop().run_in_executor(executor, transcribe, audio) # Run transcription in executor
|
166 |
+
reply = await run_model(user, web_search)
|
167 |
+
audio_path = await generate_speech(reply)
|
168 |
+
return audio_path
|
169 |
+
|
170 |
with gr.Blocks() as demo:
|
171 |
with gr.Row():
|
172 |
web_search = gr.Checkbox(label="Web Search", value=False)
|
173 |
+
input = gr.Audio(label="Voice Chat", sources="microphone", type="numpy")
|
174 |
output = gr.Audio(label="AI",autoplay=True)
|
175 |
+
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
|
176 |
|
177 |
if __name__ == "__main__":
|
178 |
demo.queue(max_size=200).launch()
|