Ahmed0011 commited on
Commit
e4bac04
·
verified ·
1 Parent(s): a6a0b43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -190
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  import edge_tts
3
  import asyncio
@@ -13,12 +14,12 @@ import requests
13
  from bs4 import BeautifulSoup
14
  import urllib
15
  import random
16
- import speech_recognition as sr
17
 
18
  theme = gr.themes.Soft(
19
  primary_hue="blue",
20
  secondary_hue="orange")
21
 
 
22
  # List of user agents to choose from for requests
23
  _useragent_list = [
24
  'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
@@ -159,204 +160,17 @@ async def respond(audio, web_search):
159
  await communicate.save(tmp_path)
160
  return tmp_path
161
 
162
- def listen_for_speech(web_search):
163
- recognizer = sr.Recognizer()
164
- with sr.Microphone() as source:
165
- print("Listening for speech...")
166
- audio_data = recognizer.listen(source)
167
- with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
168
- tmp_path = tmp_file.name
169
- with open(tmp_path, 'wb') as f:
170
- f.write(audio_data.get_wav_data())
171
- return asyncio.run(respond(tmp_path, web_search))
172
-
173
  with gr.Blocks(theme=theme) as demo:
174
  with gr.Row():
175
  web_search = gr.Checkbox(label="Web Search", value=False)
 
176
  output = gr.Audio(label="AI", autoplay=True)
177
- demo.add_listener(listen_for_speech, inputs=[web_search], outputs=[output])
178
 
179
  if __name__ == "__main__":
180
  demo.queue(max_size=200).launch()
181
 
182
 
183
-
184
-
185
-
186
-
187
-
188
- # import gradio as gr
189
- # import edge_tts
190
- # import asyncio
191
- # import tempfile
192
- # import numpy as np
193
- # import soxr
194
- # from pydub import AudioSegment
195
- # import torch
196
- # import sentencepiece as spm
197
- # import onnxruntime as ort
198
- # from huggingface_hub import hf_hub_download, InferenceClient
199
- # import requests
200
- # from bs4 import BeautifulSoup
201
- # import urllib
202
- # import random
203
-
204
- # theme = gr.themes.Soft(
205
- # primary_hue="blue",
206
- # secondary_hue="orange")
207
-
208
-
209
- # # List of user agents to choose from for requests
210
- # _useragent_list = [
211
- # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
212
- # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
213
- # 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
214
- # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
215
- # 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
216
- # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
217
- # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
218
- # ]
219
-
220
- # def get_useragent():
221
- # """Returns a random user agent from the list."""
222
- # return random.choice(_useragent_list)
223
-
224
- # def extract_text_from_webpage(html_content):
225
- # """Extracts visible text from HTML content using BeautifulSoup."""
226
- # soup = BeautifulSoup(html_content, "html.parser")
227
- # # Remove unwanted tags
228
- # for tag in soup(["script", "style", "header", "footer", "nav"]):
229
- # tag.extract()
230
- # # Get the remaining visible text
231
- # visible_text = soup.get_text(strip=True)
232
- # return visible_text
233
-
234
- # def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
235
- # """Performs a Google search and returns the results."""
236
- # escaped_term = urllib.parse.quote_plus(term)
237
- # start = 0
238
- # all_results = []
239
-
240
- # # Fetch results in batches
241
- # while start < num_results:
242
- # resp = requests.get(
243
- # url="https://www.google.com/search",
244
- # headers={"User-Agent": get_useragent()}, # Set random user agent
245
- # params={
246
- # "q": term,
247
- # "num": num_results - start, # Number of results to fetch in this batch
248
- # "hl": lang,
249
- # "start": start,
250
- # "safe": safe,
251
- # },
252
- # timeout=timeout,
253
- # verify=ssl_verify,
254
- # )
255
- # resp.raise_for_status() # Raise an exception if request fails
256
-
257
- # soup = BeautifulSoup(resp.text, "html.parser")
258
- # result_block = soup.find_all("div", attrs={"class": "g"})
259
-
260
- # # If no results, continue to the next batch
261
- # if not result_block:
262
- # start += 1
263
- # continue
264
-
265
- # # Extract link and text from each result
266
- # for result in result_block:
267
- # link = result.find("a", href=True)
268
- # if link:
269
- # link = link["href"]
270
- # try:
271
- # # Fetch webpage content
272
- # webpage = requests.get(link, headers={"User-Agent": get_useragent()})
273
- # webpage.raise_for_status()
274
- # # Extract visible text from webpage
275
- # visible_text = extract_text_from_webpage(webpage.text)
276
- # all_results.append({"link": link, "text": visible_text})
277
- # except requests.exceptions.RequestException as e:
278
- # # Handle errors fetching or processing webpage
279
- # print(f"Error fetching or processing {link}: {e}")
280
- # all_results.append({"link": link, "text": None})
281
- # else:
282
- # all_results.append({"link": None, "text": None})
283
-
284
- # start += len(result_block) # Update starting index for next batch
285
-
286
- # return all_results
287
-
288
- # # Speech Recognition Model Configuration
289
- # model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
290
- # sample_rate = 16000
291
-
292
- # # Download preprocessor, encoder and tokenizer
293
- # preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
294
- # encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
295
- # tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
296
-
297
- # # Mistral Model Configuration
298
- # client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
299
- # system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
300
-
301
- # def resample(audio_fp32, sr):
302
- # return soxr.resample(audio_fp32, sr, sample_rate)
303
-
304
- # def to_float32(audio_buffer):
305
- # return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
306
-
307
- # def transcribe(audio_path):
308
- # audio_file = AudioSegment.from_file(audio_path)
309
- # sr = audio_file.frame_rate
310
- # audio_buffer = np.array(audio_file.get_array_of_samples())
311
-
312
- # audio_fp32 = to_float32(audio_buffer)
313
- # audio_16k = resample(audio_fp32, sr)
314
-
315
- # input_signal = torch.tensor(audio_16k).unsqueeze(0)
316
- # length = torch.tensor(len(audio_16k)).unsqueeze(0)
317
- # processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
318
-
319
- # logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
320
-
321
- # blank_id = tokenizer.vocab_size()
322
- # decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
323
- # text = tokenizer.decode_ids(decoded_prediction)
324
-
325
- # return text
326
-
327
- # def model(text, web_search):
328
- # if web_search is True:
329
- # """Performs a web search, feeds the results to a language model, and returns the answer."""
330
- # web_results = search(text)
331
- # web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
332
- # formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
333
- # stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
334
- # return "".join([response.token.text for response in stream if response.token.text != "</s>"])
335
- # else:
336
- # formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
337
- # stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
338
- # return "".join([response.token.text for response in stream if response.token.text != "</s>"])
339
-
340
- # async def respond(audio, web_search):
341
- # user = transcribe(audio)
342
- # reply = model(user, web_search)
343
- # communicate = edge_tts.Communicate(reply)
344
- # with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
345
- # tmp_path = tmp_file.name
346
- # await communicate.save(tmp_path)
347
- # return tmp_path
348
-
349
- # with gr.Blocks(theme=theme) as demo:
350
- # with gr.Row():
351
- # web_search = gr.Checkbox(label="Web Search", value=False)
352
- # input = gr.Audio(label="User Input", sources="microphone", type="filepath")
353
- # output = gr.Audio(label="AI", autoplay=True)
354
- # gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
355
-
356
- # if __name__ == "__main__":
357
- # demo.queue(max_size=200).launch()
358
-
359
-
360
  # import gradio as gr
361
  # import edge_tts
362
  # import asyncio
 
1
+
2
  import gradio as gr
3
  import edge_tts
4
  import asyncio
 
14
  from bs4 import BeautifulSoup
15
  import urllib
16
  import random
 
17
 
18
  theme = gr.themes.Soft(
19
  primary_hue="blue",
20
  secondary_hue="orange")
21
 
22
+
23
  # List of user agents to choose from for requests
24
  _useragent_list = [
25
  'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
 
160
  await communicate.save(tmp_path)
161
  return tmp_path
162
 
 
 
 
 
 
 
 
 
 
 
 
163
  with gr.Blocks(theme=theme) as demo:
164
  with gr.Row():
165
  web_search = gr.Checkbox(label="Web Search", value=False)
166
+ input = gr.Audio(label="User Input", sources="microphone", type="filepath")
167
  output = gr.Audio(label="AI", autoplay=True)
168
+ gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
169
 
170
  if __name__ == "__main__":
171
  demo.queue(max_size=200).launch()
172
 
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  # import gradio as gr
175
  # import edge_tts
176
  # import asyncio