File size: 1,316 Bytes
8c4ab6b
e76263f
 
b51e1ff
8c4ab6b
 
 
 
 
 
 
 
 
b51e1ff
 
e76263f
 
 
b51e1ff
e76263f
 
 
b51e1ff
 
e76263f
20a4635
4d81aab
 
 
 
b51e1ff
4d81aab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import gradio as gr
import numpy as np

# Load the model and tokenizer
model_id = "vikhyatk/moondream2"
revision = "2024-05-20"
model = AutoModelForCausalLM.from_pretrained(
    model_id, trust_remote_code=True, revision=revision
)
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)

def analyze_image_direct(image, question):
    # Convert PIL Image to the format expected by the model
    # Note: This step depends on the model's expected input format
    # For demonstration, assuming the model accepts PIL images directly
    enc_image = model.encode_image(image)  # This method might not exist; adjust based on actual model capabilities
    
    # Generate an answer to the question based on the encoded image
    # Note: This step is hypothetical and depends on the model's capabilities
    answer = model.answer_question(enc_image, question, tokenizer)  # Adjust based on actual model capabilities
    
    return answer
# Create a Gradio interface
with gr.Blocks() as block:
    image = gr.Image(label="Image")
    question = gr.Textbox(label="Question")
    output = gr.Textbox(label="Answer")
    block.add(gr.Interface(fn=analyze_image_direct, inputs=[image, question], outputs=output))

block.launch()