Ahmed007 commited on
Commit
6943488
·
1 Parent(s): fbffd6e

Add application file

Browse files
Files changed (1) hide show
  1. app.py +66 -54
app.py CHANGED
@@ -1,6 +1,12 @@
1
  from transformers import AutoModelForCausalLM, AutoTokenizer
2
  from PIL import Image
3
  import gradio as gr
 
 
 
 
 
 
4
 
5
  # Load the model and tokenizer
6
  model_id = "vikhyatk/moondream2"
@@ -15,62 +21,68 @@ def analyze_image_direct(image, question):
15
  # For demonstration, it returns a static response.
16
  return "This is a placeholder answer."
17
 
18
- # Define custom CSS to make the interface purple
19
- custom_css = """
20
- /* General background */
21
- body {
22
- background-color: #6a0dad; /* Rich purple background */
23
- color: #EDE7F6; /* Light purple text for contrast */
24
- }
25
-
26
- /* Buttons */
27
- button {
28
- background-color: #9c27b0; /* Vibrant purple */
29
- color: #FFFFFF; /* White text */
30
- border: none;
31
- border-radius: 5px; /* Rounded corners for buttons */
32
- padding: 10px 20px;
33
- cursor: pointer;
34
- transition: background-color 0.3s ease;
35
- }
36
-
37
- button:hover {
38
- background-color: #7b1fa2; /* Darker purple on hover */
39
- }
40
-
41
- /* Text inputs and text areas */
42
- input[type="text"], textarea {
43
- background-color: #9575cd; /* Soft purple */
44
- color: #FFFFFF; /* White text */
45
- border: none;
46
- padding: 10px;
47
- border-radius: 5px; /* Rounded corners for text inputs */
48
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
- /* Gradio interface container for a more centered look */
51
- .gradio_container {
52
- max-width: 800px; /* Adjust based on preference */
53
- margin: auto;
54
- padding: 20px;
55
- border-radius: 10px;
56
- box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); /* Soft shadow for depth */
57
- }
58
 
59
- /* Titles and descriptions */
60
- h1, h2, h3, p {
61
- color: #EDE7F6; /* Light purple text for readability */
62
- }
63
- """
64
 
 
 
 
 
 
 
 
65
 
66
- # Create Gradio interface with custom CSS for a purple theme
67
- iface = gr.Interface(fn=analyze_image_direct,
68
- inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your question here...")],
69
- outputs='text',
70
- title="Direct Image Question Answering",
71
- description="Upload an image and ask a question about it directly using the model.",
72
- theme="dark", # Use the dark theme as a base
73
- css=custom_css) # Apply custom CSS
74
 
75
- # Launch the interface
76
- iface.launch()
 
1
  from transformers import AutoModelForCausalLM, AutoTokenizer
2
  from PIL import Image
3
  import gradio as gr
4
+ from __future__ import annotations
5
+ from typing import Iterable
6
+ import gradio as gr
7
+ from gradio.themes.base import Base
8
+ from gradio.themes.utils import colors, fonts, sizes
9
+ import time
10
 
11
  # Load the model and tokenizer
12
  model_id = "vikhyatk/moondream2"
 
21
  # For demonstration, it returns a static response.
22
  return "This is a placeholder answer."
23
 
24
+ class Seafoam(Base):
25
+ def __init__(
26
+ self,
27
+ *,
28
+ primary_hue: colors.Color | str = colors.emerald,
29
+ secondary_hue: colors.Color | str = colors.blue,
30
+ neutral_hue: colors.Color | str = colors.blue,
31
+ spacing_size: sizes.Size | str = sizes.spacing_md,
32
+ radius_size: sizes.Size | str = sizes.radius_md,
33
+ text_size: sizes.Size | str = sizes.text_lg,
34
+ font: fonts.Font
35
+ | str
36
+ | Iterable[fonts.Font | str] = (
37
+ fonts.GoogleFont("Quicksand"),
38
+ "ui-sans-serif",
39
+ "sans-serif",
40
+ ),
41
+ font_mono: fonts.Font
42
+ | str
43
+ | Iterable[fonts.Font | str] = (
44
+ fonts.GoogleFont("IBM Plex Mono"),
45
+ "ui-monospace",
46
+ "monospace",
47
+ ),
48
+ ):
49
+ super().__init__(
50
+ primary_hue=primary_hue,
51
+ secondary_hue=secondary_hue,
52
+ neutral_hue=neutral_hue,
53
+ spacing_size=spacing_size,
54
+ radius_size=radius_size,
55
+ text_size=text_size,
56
+ font=font,
57
+ font_mono=font_mono,
58
+ )
59
+ super().set(
60
+ body_background_fill="repeating-linear-gradient(45deg, *primary_200, *primary_200 10px, *primary_50 10px, *primary_50 20px)",
61
+ body_background_fill_dark="repeating-linear-gradient(45deg, *primary_800, *primary_800 10px, *primary_900 10px, *primary_900 20px)",
62
+ button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
63
+ button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
64
+ button_primary_text_color="white",
65
+ button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
66
+ slider_color="*secondary_300",
67
+ slider_color_dark="*secondary_600",
68
+ block_title_text_weight="600",
69
+ block_border_width="3px",
70
+ block_shadow="*shadow_drop_lg",
71
+ button_shadow="*shadow_drop_lg",
72
+ button_large_padding="32px",
73
+ )
74
 
 
 
 
 
 
 
 
 
75
 
76
+ seafoam = Seafoam()
 
 
 
 
77
 
78
+ with gr.Blocks(theme=seafoam) as demo:
79
+ with gr.Row():
80
+ image_input = gr.Image(type="pil")
81
+ question_input = gr.Textbox(lines=2, placeholder="Enter your question here...")
82
+ with gr.Row():
83
+ submit_button = gr.Button("Analyze")
84
+ output = gr.Textbox()
85
 
86
+ submit_button.click(fn=analyze_image_direct, inputs=[image_input, question_input], outputs=output)
 
 
 
 
 
 
 
87
 
88
+ demo.launch()