Ahmed007 commited on
Commit
83e1fb4
·
1 Parent(s): 475ca62

Add application file

Browse files
Files changed (1) hide show
  1. app.py +23 -14
app.py CHANGED
@@ -3,7 +3,6 @@ from typing import Iterable
3
  import gradio as gr
4
  from gradio.themes.base import Base
5
  from gradio.themes.utils import colors, fonts, sizes
6
- import time
7
  from transformers import AutoModelForCausalLM, AutoTokenizer
8
  from PIL import Image
9
  import numpy as np
@@ -17,25 +16,35 @@ model = AutoModelForCausalLM.from_pretrained(
17
  tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
18
 
19
  def analyze_image_direct(image, question):
 
 
 
 
20
  # Convert PIL Image to the format expected by the model
21
- # Note: This step depends on the model's expected input format
22
- # For demonstration, assuming the model accepts PIL images directly
23
- enc_image = model.encode_image(image) # This method might not exist; adjust based on actual model capabilities
24
 
25
- # Generate an answer to the question based on the encoded image
26
- # Note: This step is hypothetical and depends on the model's capabilities
27
- answer = model.answer_question(enc_image, question, tokenizer) # Adjust based on actual model capabilities
 
28
 
29
  return answer
30
 
31
  # Define a custom theme with purple color scheme
32
  class PurpleTheme(Base):
33
- primary_color = "#9b59b6" # Example purple shade
34
- primary_color_dark = "#8e44ad" # Darker purple
35
- text_color = "#FFFFFF" # White text for contrast
36
- background_color = "#5B2C6F" # Deep purple background
37
- secondary_background_color = "#7D3C98" # Lighter purple for secondary elements
38
- font = "Arial"
 
 
 
 
 
 
39
 
40
  # Create a custom theme instance
41
  purple_theme = PurpleTheme()
@@ -49,4 +58,4 @@ iface = gr.Interface(fn=analyze_image_direct,
49
  description="Upload an image and ask a question about it directly using the model.")
50
 
51
  # Launch the interface
52
- iface.launch()
 
3
  import gradio as gr
4
  from gradio.themes.base import Base
5
  from gradio.themes.utils import colors, fonts, sizes
 
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  from PIL import Image
8
  import numpy as np
 
16
  tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
17
 
18
  def analyze_image_direct(image, question):
19
+ # This is a placeholder; modify based on the actual capabilities of your model.
20
+ # Here we assume that the model has methods `encode_image` and `answer_question` which might not exist.
21
+ # You need to replace them with the actual methods your model uses to process images and generate answers.
22
+
23
  # Convert PIL Image to the format expected by the model
24
+ # Example transformation (actual code will depend on model's requirements):
25
+ enc_image = np.array(image) # Placeholder transformation; adjust as needed
 
26
 
27
+ # Hypothetical method calls (replace with actual methods):
28
+ inputs = tokenizer.encode(question, return_tensors='pt')
29
+ outputs = model.generate(inputs, max_length=50)
30
+ answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
31
 
32
  return answer
33
 
34
  # Define a custom theme with purple color scheme
35
  class PurpleTheme(Base):
36
+ def __init__(self):
37
+ super().__init__()
38
+ self.primary_hue = colors.Purple
39
+ self.secondary_hue = colors.Purple
40
+ self.neutral_hue = colors.Gray
41
+ self.text_size = sizes.text_lg
42
+ self.text_color = colors.white
43
+ self.background_color = colors.purple_900
44
+ self.primary_text_color = colors.white
45
+ self.secondary_background_color = colors.purple_700
46
+ self.secondary_text_color = colors.white
47
+ self.font = fonts.GoogleFont("Arial")
48
 
49
  # Create a custom theme instance
50
  purple_theme = PurpleTheme()
 
58
  description="Upload an image and ask a question about it directly using the model.")
59
 
60
  # Launch the interface
61
+ iface.launch()