Add application file
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ from typing import Iterable
|
|
3 |
import gradio as gr
|
4 |
from gradio.themes.base import Base
|
5 |
from gradio.themes.utils import colors, fonts, sizes
|
6 |
-
import time
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
from PIL import Image
|
9 |
import numpy as np
|
@@ -17,25 +16,35 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
18 |
|
19 |
def analyze_image_direct(image, question):
|
|
|
|
|
|
|
|
|
20 |
# Convert PIL Image to the format expected by the model
|
21 |
-
#
|
22 |
-
|
23 |
-
enc_image = model.encode_image(image) # This method might not exist; adjust based on actual model capabilities
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
return answer
|
30 |
|
31 |
# Define a custom theme with purple color scheme
|
32 |
class PurpleTheme(Base):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Create a custom theme instance
|
41 |
purple_theme = PurpleTheme()
|
@@ -49,4 +58,4 @@ iface = gr.Interface(fn=analyze_image_direct,
|
|
49 |
description="Upload an image and ask a question about it directly using the model.")
|
50 |
|
51 |
# Launch the interface
|
52 |
-
iface.launch()
|
|
|
3 |
import gradio as gr
|
4 |
from gradio.themes.base import Base
|
5 |
from gradio.themes.utils import colors, fonts, sizes
|
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from PIL import Image
|
8 |
import numpy as np
|
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
17 |
|
18 |
def analyze_image_direct(image, question):
|
19 |
+
# This is a placeholder; modify based on the actual capabilities of your model.
|
20 |
+
# Here we assume that the model has methods `encode_image` and `answer_question` which might not exist.
|
21 |
+
# You need to replace them with the actual methods your model uses to process images and generate answers.
|
22 |
+
|
23 |
# Convert PIL Image to the format expected by the model
|
24 |
+
# Example transformation (actual code will depend on model's requirements):
|
25 |
+
enc_image = np.array(image) # Placeholder transformation; adjust as needed
|
|
|
26 |
|
27 |
+
# Hypothetical method calls (replace with actual methods):
|
28 |
+
inputs = tokenizer.encode(question, return_tensors='pt')
|
29 |
+
outputs = model.generate(inputs, max_length=50)
|
30 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
|
32 |
return answer
|
33 |
|
34 |
# Define a custom theme with purple color scheme
|
35 |
class PurpleTheme(Base):
|
36 |
+
def __init__(self):
|
37 |
+
super().__init__()
|
38 |
+
self.primary_hue = colors.Purple
|
39 |
+
self.secondary_hue = colors.Purple
|
40 |
+
self.neutral_hue = colors.Gray
|
41 |
+
self.text_size = sizes.text_lg
|
42 |
+
self.text_color = colors.white
|
43 |
+
self.background_color = colors.purple_900
|
44 |
+
self.primary_text_color = colors.white
|
45 |
+
self.secondary_background_color = colors.purple_700
|
46 |
+
self.secondary_text_color = colors.white
|
47 |
+
self.font = fonts.GoogleFont("Arial")
|
48 |
|
49 |
# Create a custom theme instance
|
50 |
purple_theme = PurpleTheme()
|
|
|
58 |
description="Upload an image and ask a question about it directly using the model.")
|
59 |
|
60 |
# Launch the interface
|
61 |
+
iface.launch()
|