|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
classifier = pipeline("sentiment-analysis", model="Ahmed107/EOS_bert") |
|
|
|
def text_classification(text): |
|
result= classifier(text) |
|
sentiment_label = result[0]['label'] |
|
sentiment_score = result[0]['score'] |
|
formatted_output = f"This sentiment is {sentiment_label} with the probability {sentiment_score*100:.2f}%" |
|
return formatted_output |
|
|
|
examples=["ุงููุง", "ูุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู"] |
|
|
|
io = gr.Interface(fn=text_classification, |
|
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter title here..."), |
|
outputs=gr.Textbox(lines=2, label="Text Classification Result"), |
|
title="Text Classification", |
|
description="Enter a text and see the text classification result!", |
|
examples=examples) |
|
|
|
io.launch() |
|
|