Ahmed235 commited on
Commit
0172e31
·
verified ·
1 Parent(s): fcf7672

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -13
app.py CHANGED
@@ -1,24 +1,20 @@
1
- from pptx import Presentation
2
- import re
3
  import gradio as gr
4
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
5
  import torch
6
  import torch.nn.functional as F
7
 
8
- # Load the pre-trained model and tokenizer
 
 
 
9
  tokenizer = AutoTokenizer.from_pretrained("Ahmed235/roberta_classification")
10
- model = AutoModelForSequenceClassification.from_pretrained("Ahmed235/roberta_classification")
11
  device = torch.device("cpu")
12
  model = model.to(device) # Move the model to the CPU
13
 
14
  def extract_text_from_pptx(file_path):
15
- presentation = Presentation(file_path)
16
- text = []
17
- for slide_number, slide in enumerate(presentation.slides, start=1):
18
- for shape in slide.shapes:
19
- if hasattr(shape, "text"):
20
- text.append(shape.text)
21
- return "\n".join(text)
22
 
23
  def predict_pptx_content(file_path):
24
  try:
@@ -62,4 +58,4 @@ iface = gr.Interface(
62
  )
63
 
64
  # Deploy the Gradio interface
65
- iface.launch(share=True)
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
  import torch
4
  import torch.nn.functional as F
5
 
6
+ # Load the pre-trained model and tokenizer using gr.load
7
+ model = gr.load("models/Ahmed235/roberta_classification")
8
+
9
+ # Tokenizer can be loaded using transformers directly
10
  tokenizer = AutoTokenizer.from_pretrained("Ahmed235/roberta_classification")
11
+
12
  device = torch.device("cpu")
13
  model = model.to(device) # Move the model to the CPU
14
 
15
  def extract_text_from_pptx(file_path):
16
+ # Assume your implementation for text extraction remains the same
17
+ pass
 
 
 
 
 
18
 
19
  def predict_pptx_content(file_path):
20
  try:
 
58
  )
59
 
60
  # Deploy the Gradio interface
61
+ iface.launch(share=True)