Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
from pptx import Presentation
|
6 |
-
import re
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
# Tokenizer can be loaded using transformers directly
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained("Ahmed235/roberta_classification")
|
13 |
|
14 |
def extract_text_from_pptx(file_path):
|
15 |
presentation = Presentation(file_path)
|
@@ -23,22 +16,12 @@ def extract_text_from_pptx(file_path):
|
|
23 |
def predict_pptx_content(file_path):
|
24 |
try:
|
25 |
extracted_text = extract_text_from_pptx(file_path)
|
26 |
-
cleaned_text = re.sub(r'\s+', ' ', extracted_text)
|
27 |
-
|
28 |
-
# Tokenize and encode the cleaned text
|
29 |
-
input_encoding = tokenizer(cleaned_text, truncation=True, padding=True, return_tensors="pt")
|
30 |
-
input_encoding = {key: val.to(device) for key, val in input_encoding.items()} # Move input tensor to CPU
|
31 |
-
|
32 |
-
# Perform inference
|
33 |
-
with torch.no_grad():
|
34 |
-
outputs = model(**input_encoding)
|
35 |
-
logits = outputs.logits
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
predicted_probability = probabilities[0][predicted_label_id].item()
|
42 |
|
43 |
prediction = {
|
44 |
"Predicted Label": predicted_label,
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Create a text classification pipeline
|
5 |
+
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification", tokenizer="Ahmed235/roberta_classification")
|
|
|
|
|
|
|
6 |
|
7 |
def extract_text_from_pptx(file_path):
|
8 |
presentation = Presentation(file_path)
|
|
|
16 |
def predict_pptx_content(file_path):
|
17 |
try:
|
18 |
extracted_text = extract_text_from_pptx(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Perform inference using the pipeline
|
21 |
+
result = classifier(extracted_text)
|
22 |
|
23 |
+
predicted_label = result[0]['label']
|
24 |
+
predicted_probability = result[0]['score']
|
|
|
25 |
|
26 |
prediction = {
|
27 |
"Predicted Label": predicted_label,
|