Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# inference.py
|
2 |
+
|
3 |
+
from pptx import Presentation
|
4 |
+
import re
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
def extract_text_from_pptx(file_path):
|
8 |
+
presentation = Presentation(file_path)
|
9 |
+
|
10 |
+
text = []
|
11 |
+
for slide_number, slide in enumerate(presentation.slides, start=1):
|
12 |
+
for shape in slide.shapes:
|
13 |
+
if hasattr(shape, "text"):
|
14 |
+
text.append(shape.text)
|
15 |
+
|
16 |
+
return "\n".join(text)
|
17 |
+
|
18 |
+
def main():
|
19 |
+
file_path = "path/to/your/powerpoint.pptx" # Specify the path to your PowerPoint file
|
20 |
+
|
21 |
+
extracted_text = extract_text_from_pptx(file_path)
|
22 |
+
cleaned_text = re.sub(r'\s+', ' ', extracted_text)
|
23 |
+
|
24 |
+
print(cleaned_text)
|
25 |
+
|
26 |
+
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification")
|
27 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
28 |
+
|
29 |
+
result = classifier(cleaned_text)[0]
|
30 |
+
predicted_label = result['label']
|
31 |
+
predicted_probability = result['score']
|
32 |
+
|
33 |
+
print("Predicted Label:", predicted_label)
|
34 |
+
print(f"Evaluate the topic according to {predicted_label} is: {predicted_probability}")
|
35 |
+
print(summarizer(cleaned_text, max_length=80, min_length=30, do_sample=False))
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
main()
|