Ahmed235 commited on
Commit
9e4c3a1
·
verified ·
1 Parent(s): 1aa90a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -22
app.py CHANGED
@@ -1,7 +1,6 @@
1
  from pptx import Presentation
2
  import re
3
  from transformers import pipeline
4
- import subprocess
5
  import gradio as gr
6
 
7
  def extract_text_from_pptx(file_path):
@@ -22,7 +21,7 @@ def predict_pptx_content(file_path):
22
  cleaned_text = re.sub(r'\s+', ' ', extracted_text)
23
 
24
  classifier = pipeline("text-classification", model="Ahmed235/roberta_classification")
25
- #summarizer = pipeline("summarization", model="Falconsai/text_summarization")
26
 
27
  result = classifier(cleaned_text)[0]
28
  predicted_label = result['label']
@@ -31,29 +30,14 @@ def predict_pptx_content(file_path):
31
  prediction = {
32
  "Predicted Label": predicted_label,
33
  "Evaluation": f"Evaluate the topic according to {predicted_label} is: {predicted_probability}"
34
- #"Summary": summarizer(cleaned_text, max_length=80, min_length=30, do_sample=False)
35
  }
36
 
37
  return prediction
38
  except Exception as e:
39
- print(f"Error processing file: {e}")
40
- return {"error": str(e)}
41
-
42
-
43
- classifier = pipeline("text-classification", model="Ahmed235/roberta_classification")
44
- #summarizer = pipeline("summarization", model="Falconsai/text_summarization")
45
-
46
- result = classifier(cleaned_text)[0]
47
- predicted_label = result['label']
48
- predicted_probability = result['score']
49
-
50
- prediction = {
51
- "Predicted Label": predicted_label,
52
- "Evaluation": f"Evaluate the topic according to {predicted_label} is: {predicted_probability}"
53
- #"Summary": summarizer(cleaned_text, max_length=80, min_length=30, do_sample=False)
54
- }
55
-
56
- return prediction
57
 
58
  # Define the Gradio interface
59
  iface = gr.Interface(
@@ -65,4 +49,4 @@ iface = gr.Interface(
65
  )
66
 
67
  # Deploy the Gradio interface
68
- iface.launch(share=True)
 
1
  from pptx import Presentation
2
  import re
3
  from transformers import pipeline
 
4
  import gradio as gr
5
 
6
  def extract_text_from_pptx(file_path):
 
21
  cleaned_text = re.sub(r'\s+', ' ', extracted_text)
22
 
23
  classifier = pipeline("text-classification", model="Ahmed235/roberta_classification")
24
+ # summarizer = pipeline("summarization", model="Falconsai/text_summarization")
25
 
26
  result = classifier(cleaned_text)[0]
27
  predicted_label = result['label']
 
30
  prediction = {
31
  "Predicted Label": predicted_label,
32
  "Evaluation": f"Evaluate the topic according to {predicted_label} is: {predicted_probability}"
33
+ # "Summary": summarizer(cleaned_text, max_length=80, min_length=30, do_sample=False)
34
  }
35
 
36
  return prediction
37
  except Exception as e:
38
+ error_message = str(e)
39
+ print(f"Error processing file: {error_message}")
40
+ return {"error": error_message}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  # Define the Gradio interface
43
  iface = gr.Interface(
 
49
  )
50
 
51
  # Deploy the Gradio interface
52
+ iface.launch(share=True)