AhmedIbrahim007's picture
Update app.py
10e6ed7 verified
import json
import cv2
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import logging
import tempfile
from pathlib import Path
import firebase_admin
from firebase_admin import credentials, firestore, storage
from pydantic import BaseModel
from deepface import DeepFace
from tqdm import tqdm
# Set up logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialize Firebase
try:
cred = credentials.Certificate("serviceAccountKey.json")
firebase_app = firebase_admin.initialize_app(cred, {
'storageBucket': 'future-forge-60d3f.appspot.com'
})
db = firestore.client()
bucket = storage.bucket(app=firebase_app)
logger.info("Firebase initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Firebase: {str(e)}")
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define the input model
class FileProcess(BaseModel):
file_path: str
@app.post("/facial-emotion")
async def process_file(file_data: FileProcess):
logger.info(f"Processing file from Firebase Storage: {file_data.file_path}")
try:
# Get the file from Firebase Storage
blob = bucket.blob(file_data.file_path)
# Create a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_data.file_path.split('.')[-1]}") as tmp_file:
blob.download_to_filename(tmp_file.name)
tmp_file_path = Path(tmp_file.name)
logger.info(f"File downloaded temporarily at: {tmp_file_path}")
file_type = file_data.file_path.split('.')[-1].lower()
result = None
try:
if file_type in ['jpg', 'jpeg', 'png', 'bmp']:
output_image = process_image(tmp_file_path)
result = {"type": "image", "data": output_image}
elif file_type in ['mp4', 'avi', 'mov', 'wmv']:
video_output = process_video(str(tmp_file_path))
result = {"type": "video", "data": video_output}
else:
raise HTTPException(status_code=400, detail="Unsupported file type")
logger.info(f"Processing complete. Result: {result}")
# Store result in Firebase
try:
doc_ref = db.collection('results').add(result)
return {"message": "File processed successfully", "result": result}
except Exception as e:
logger.error(f"Failed to store result in Firebase: {str(e)}")
return {"message": "File processed successfully, but failed to store in Firebase", "result": result,
"error": str(e)}
finally:
# Clean up the temporary file after processing
if tmp_file_path.exists():
tmp_file_path.unlink()
except Exception as e:
logger.error(f"Error processing file: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")
def process_video(video_path, output_video_path='output_video.mp4', frame_sample_rate=5):
cap = cv2.VideoCapture(video_path)
# Check if video opened successfully
if not cap.isOpened():
logger.error("Error: Could not open video.")
return None
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
output = {}
frame_index = 0
# Create a progress bar
with tqdm(total=total_frames, desc="Processing video") as pbar:
while True:
ret, frame = cap.read()
if not ret:
logger.info("End of video or cannot capture the frame.")
break
if frame_index % frame_sample_rate == 0: # Only analyze every nth frame
try:
result = DeepFace.analyze(frame, actions=['emotion'], detector_backend='retinaface',enforce_detection=False)
except Exception as e:
logger.error(f"Error analyzing frame {frame_index}: {e}")
output[frame_index] = {}
out.write(frame) # Write the original frame
frame_index += 1
pbar.update(1)
continue # Skip to the next frame
tmp = {}
for face in result:
x, y, w, h = face['region']['x'], face['region']['y'], face['region']['w'], face['region']['h']
emotion = face['dominant_emotion']
emotion_scores = face['emotion']
tmp[(x, y, w, h)] = {'emotion': emotion, 'score': emotion_scores[emotion]}
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.putText(frame, f"{emotion} ({emotion_scores[emotion]:.2f})", (x, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
output[frame_index] = tmp
out.write(frame) # Write the processed frame
frame_index += 1
pbar.update(1) # Update progress bar
# Release resources
cap.release()
out.release()
# Save the results to a file
with open('results_video.txt', 'w') as file:
for frame_num, faces_info in output.items():
file.write(f"Frame {frame_num} ")
for face_key, info in faces_info.items():
file.write(f"{face_key}: {info}\n")
logger.info(f"Processed {frame_index} frames.")
video_json_output = calculate_emotion_percentages('results_video.txt')
print(video_json_output)
return video_json_output
def process_image(image_path):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Unable to load image from path {image_path}")
return
try:
# Analyze the image for face detection and emotion analysis
result = DeepFace.analyze(image_path, actions=['emotion'], detector_backend='retinaface',enforce_detection=False)
except Exception as e:
print(f"Error analyzing image: {e}")
return image
if len(result) == 0:
print("No faces detected.")
return image # Return the original image if no faces are detected
output = {}
tmp = {}
for i, face in enumerate(result):
# Get bounding box coordinates for each detected face
x, y, w, h = face['region']['x'], face['region']['y'], face['region']['w'], face['region']['h']
# Extract emotion data
emotion = face['dominant_emotion']
emotion_scores = face['emotion']
tmp[i] = {'person':i+1,'emotion': emotion, 'score': f"{emotion_scores[emotion]:.3f}"}
# Draw rectangle around face and label with predicted emotion
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(image, f"{emotion} ({emotion_scores[emotion]:.3f})", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8,(0, 255, 0), 2)
output['output'] = tmp
# Save the processed image with bounding boxes and labels
output_image_path = 'output_image_with_emotions.jpg'
cv2.imwrite(output_image_path, image)
print(f"Processed image saved as {output_image_path}")
string_image_output = json.dumps(output['output'])
return string_image_output
def calculate_emotion_percentages(file_path):
emotions = {}
total_frames = 0
with open(file_path, 'r') as file:
for line in file:
if "{'emotion':" in line:
total_frames += 1
emotion = line.split("'emotion': ")[1].split("'")[1]
emotions[emotion] = emotions.get(emotion, 0) + 1
emotion_percentages = [
{"emotion": emotion, "percentage": (count / total_frames) * 100}
for emotion, count in emotions.items()
]
return emotion_percentages
if __name__ == "__main__":
logger.info("Starting the Face Emotion Recognition API")
uvicorn.run(app, host="0.0.0.0", port=7860)