Spaces:
Build error
Build error
File size: 22,924 Bytes
3c92b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
import streamlit as st
import pickle
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image, UnidentifiedImageError
from sklearn.metrics.pairwise import cosine_similarity
import os
from pdf2image import convert_from_path
from streamlit_cropper import st_cropper
import easyocr
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader
import io
import base64
# -------------------
# Set page config (must be done before other elements)
# -------------------
st.set_page_config(
page_title="Mobica Find",
)
# Inject custom CSS to force a black background
st.markdown(
"""
<style>
.stApp {
background-color: black;
color: white; /* Ensures your text is visible on black background */
}
</style>
""",
unsafe_allow_html=True
)
# ---------------
# Inject top-left logo
# ---------------
logo_path = r"E:\Mobica\pdf_parser\logo_mobica.png"
with open(logo_path, "rb") as f:
logo_bytes = f.read()
encoded_logo = base64.b64encode(logo_bytes).decode()
st.markdown(
f"""
<style>
.top-left-logo {{
position: fixed;
top: 1rem;
left: 1rem;
z-index: 9999;
}}
</style>
<div class="top-left-logo">
<img src="data:image/png;base64,{encoded_logo}" width="240">
</div>
""",
unsafe_allow_html=True
)
# --------------------
# Load Processor, Model, and Metadata
# --------------------
@st.cache_resource()
def load_resources():
model_name = "kakaobrain/align-base"
# Load processor and model directly from Hugging Face
processor = AutoProcessor.from_pretrained(model_name)
model = AlignModel.from_pretrained(model_name)
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return processor, model
processor, model = load_resources()
def extract_text_with_easyocr(image, language="en"):
""" Extracts text from an image using EasyOCR. """
try:
results = reader.readtext(np.array(image), detail=0) # Get only text results
return " ".join(results) if results else ""
except Exception as e:
st.error(f"Error during OCR: {e}")
return ""
# --------------------
# Embedding Functions
# --------------------
def get_image_embedding(image):
"""Return normalized image embedding."""
image_inputs = processor(images=image, return_tensors="pt")
image_outputs = model.get_image_features(**image_inputs)
return F.normalize(image_outputs, dim=1).detach().cpu().numpy()
def get_text_embedding(text):
"""Return normalized text embedding."""
text_inputs = processor(text=[text], return_tensors="pt", padding=True, truncation=True)
text_outputs = model.get_text_features(**text_inputs)
return F.normalize(text_outputs, dim=1).detach().cpu().numpy()
# --------------------
# Search Function
# --------------------
def find_most_similar_products(
image=None,
description=None,
n=3,
combine_method="none" # "none" (image-only), "text-only", or "average" for combining
):
"""
Returns the top-n most similar products based on the specified method:
- image-only
- description-only
- both (average of embeddings)
"""
# Prepare the query embedding
if combine_method == "none" and image is not None:
query_embed = get_image_embedding(image) # image-only
elif combine_method == "text-only" and description is not None:
query_embed = get_text_embedding(description) # text-only
else:
# "average" => must have both image & description
img_emb = get_image_embedding(image)
txt_emb = get_text_embedding(description)
query_embed = (img_emb + txt_emb) / 2.0 # simple average
similarities = []
# Loop through each product in metadata and compute similarity
for entry in embeddings_metadata.values():
image_similarities = []
for emb_path in entry.get("image_embedding_paths", []):
emb_path = os.path.normpath(emb_path)
if os.path.exists(emb_path):
stored_embedding = np.load(emb_path)
# Cosine similarity
image_similarities.append(cosine_similarity(query_embed, stored_embedding).mean())
# Average all image sims in the product
overall_score = np.mean(image_similarities) if image_similarities else 0
if overall_score > 0:
similarities.append((overall_score, entry))
# Sort descending by similarity
return sorted(similarities, key=lambda x: x[0], reverse=True)[:n]
# --------------------
# Session State Setup
# --------------------
if "pdf_crops" not in st.session_state:
# We'll store pairs (snippet_image, product_image) for each page
st.session_state["pdf_crops"] = []
if "results" not in st.session_state:
st.session_state["results"] = []
# --------------------
# APP UI
# --------------------
st.title("Mobica Find")
search_method = st.selectbox(
"Choose Search Method",
["Upload PDF", "Image Only", "Description Only", "Both (Image + Description)"]
)
# -----------------------------------------------------------------------------
# 1) PDF METHOD
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# 1) PDF METHOD
# -----------------------------------------------------------------------------
# Initialize EasyOCR reader (Supports multiple languages)
reader = easyocr.Reader(["en", "ar"]) # Add languages as needed
# -------------------
# Set page config (must be done before other elements)
# -------------------
st.set_page_config(
page_title="Mobica Find",
)
# Inject custom CSS to force a black background
st.markdown(
"""
<style>
.stApp {
background-color: black;
color: white; /* Ensures your text is visible on black background */
}
</style>
""",
unsafe_allow_html=True
)
# ---------------
# Inject top-left logo
# ---------------
logo_path = r"E:\Mobica\pdf_parser\logo_mobica.png"
with open(logo_path, "rb") as f:
logo_bytes = f.read()
encoded_logo = base64.b64encode(logo_bytes).decode()
st.markdown(
f"""
<style>
.top-left-logo {{
position: fixed;
top: 1rem;
left: 1rem;
z-index: 9999;
}}
</style>
<div class="top-left-logo">
<img src="data:image/png;base64,{encoded_logo}" width="240">
</div>
""",
unsafe_allow_html=True
)
# --------------------
# Load Processor, Model, and Metadata
# --------------------
@st.cache_resource()
def load_resources():
with open(r"E:\Mobica\pdf_parser\Data Sheet\align_processor.pkl", "rb") as f:
processor = pickle.load(f)
with open(r"E:\Mobica\pdf_parser\Data Sheet\align_model.pkl", "rb") as f:
model = pickle.load(f)
with open(r"E:\Mobica\pdf_parser\Data Sheet\embeddings_metadata.pkl", "rb") as f:
embeddings_metadata = pickle.load(f)
return processor, model, embeddings_metadata
processor, model, embeddings_metadata = load_resources()
# --------------------
# OCR Function using EasyOCR
# --------------------
def extract_text_with_easyocr(image, language="en"):
""" Extracts text from an image using EasyOCR. """
try:
results = reader.readtext(np.array(image), detail=0) # Get only text results
return " ".join(results) if results else ""
except Exception as e:
st.error(f"Error during OCR: {e}")
return ""
# --------------------
# APP UI
# --------------------
st.title("Mobica Find")
search_method = st.selectbox(
"Choose Search Method",
["Upload PDF", "Image Only", "Description Only", "Both (Image + Description)"]
)
# -----------------------------------------------------------------------------
# PDF Processing Section
# -----------------------------------------------------------------------------
if search_method == "Upload PDF":
st.subheader("Upload a PDF")
uploaded_pdf = st.file_uploader("Upload a PDF", type=["pdf"])
if uploaded_pdf:
pdf_path = f"temp_{uploaded_pdf.name}"
with open(pdf_path, "wb") as f:
f.write(uploaded_pdf.getbuffer())
st.write("Extracting pages from PDF...")
pages = convert_from_path(pdf_path, 300)
if pages:
page_num = st.number_input("Select Page Number", min_value=1, max_value=len(pages), value=1) - 1
page_image = pages[page_num]
# -------------------- Crop Snippet for OCR (description) --------------------
st.subheader("Crop Snippet from PDF for OCR")
cropped_img_pdf_snippet = st_cropper(page_image, realtime_update=True, box_color='#FF0000')
description_ocr = ""
if cropped_img_pdf_snippet:
cropped_img_pdf_snippet = cropped_img_pdf_snippet.convert("RGB")
st.image(cropped_img_pdf_snippet, caption="Cropped PDF Snippet (For OCR)")
# Use EasyOCR instead of Tesseract
selected_lang = st.selectbox("Select OCR Language", ["en", "ar", "en+ar"], index=0)
description_ocr = extract_text_with_easyocr(cropped_img_pdf_snippet, language=selected_lang)
if description_ocr:
st.success("OCR text extracted successfully!")
st.write("**Detected Text**:", description_ocr)
else:
st.warning("No text detected.")
# -------------------- Crop for product image --------------------
st.subheader("Crop the Product Image")
furniture_cropped_img = st_cropper(page_image, realtime_update=True, box_color='#00FF00')
if furniture_cropped_img:
furniture_cropped_img = furniture_cropped_img.convert("RGB")
st.image(furniture_cropped_img, caption="Cropped Product Image")
# -------------------- "Done" Button to save both crops --------------------
if st.button("Done"):
st.session_state.setdefault("pdf_crops", []).append(
(cropped_img_pdf_snippet, furniture_cropped_img)
)
st.success(f"Crop #{len(st.session_state['pdf_crops'])} saved!")
# -------------------- Show saved crops if any --------------------
if "pdf_crops" in st.session_state and len(st.session_state["pdf_crops"]) > 0:
st.subheader("📊 View Saved Crops")
crop_index = st.slider("Select Crop", 1, len(st.session_state["pdf_crops"]), 1) - 1
snippet_img, product_img = st.session_state["pdf_crops"][crop_index]
col1, col2 = st.columns(2)
with col1:
if snippet_img:
st.image(snippet_img, caption=f"Snippet Crop {crop_index+1}", use_column_width=True)
with col2:
if product_img:
st.image(product_img, caption=f"Product Crop {crop_index+1}", use_column_width=True)
if st.button(f"Delete Crop {crop_index+1}"):
st.session_state["pdf_crops"].pop(crop_index)
st.success(f"Crop {crop_index+1} deleted!")
st.experimental_rerun()
# -------------------- Let user choose how many similar products --------------------
n_similar = st.slider("How many similar products do you want?", 1, 10, 3)
# -------------------- "Find Similar Products" button --------------------
if st.button("Find Similar Products"):
st.session_state["results"] = []
# We'll do an image-based search using the product crop only
for snippet_img, product_img in st.session_state["pdf_crops"]:
if product_img is not None:
results_for_img = find_most_similar_products(
image=product_img,
n=n_similar,
combine_method="none" # image-only
)
st.session_state["results"].append(results_for_img)
st.success("Results generated!")
# -------------- Display results in the Streamlit GUI --------------
for i, results_for_img in enumerate(st.session_state["results"]):
st.write(f"**Results for Crop {i+1}**:")
if results_for_img:
for sim_score, matched_entry in results_for_img:
# Extract product code from the original image path
if "original_image_paths" in matched_entry and matched_entry["original_image_paths"]:
matched_img_path = os.path.normpath(matched_entry["original_image_paths"][0])
product_code = os.path.basename(matched_img_path).split('_')[0] # Extract product code
st.subheader(f"🔹 Match (Similarity: {sim_score:.4f})")
st.write(f"**Product Code:** {product_code}") # Display product code
st.write(f"**Description:** {matched_entry.get('description', 'No description')}")
# Show the first matched image (if available)
if os.path.exists(matched_img_path):
try:
img_matched = Image.open(matched_img_path).convert("RGB")
st.image(
img_matched,
caption=f"Matched Image (Sim: {sim_score:.4f})",
use_column_width=True
)
except UnidentifiedImageError:
st.warning(f"⚠️ Cannot open image: {matched_img_path}. It might be corrupted.")
else:
st.warning(f"⚠️ Image file not found: {matched_img_path}")
else:
st.warning(f"No similar products found for Crop {i+1}.")
# -------------------- Generate PDF if results are available --------------------
if len(st.session_state["results"]) > 0:
pdf_buffer = io.BytesIO()
pdf = canvas.Canvas(pdf_buffer, pagesize=letter)
# st.session_state["results"] is a list of lists
# st.session_state["pdf_crops"] is a list of (snippet_img, product_img)
for i, (snippet_img, product_img) in enumerate(st.session_state["pdf_crops"]):
pdf.drawString(100, 750, f"Crop {i+1}")
# Add cropped product image to PDF
if product_img:
img_byte_arr = io.BytesIO()
product_img.save(img_byte_arr, format='JPEG')
img_byte_arr.seek(0)
pdf.drawImage(ImageReader(img_byte_arr), 100, 550, width=200, height=150)
y_pos = 530
# Go through the matched results for this product
if i < len(st.session_state["results"]):
for sim_score, matched_entry in st.session_state["results"][i]:
if "original_image_paths" in matched_entry and len(matched_entry["original_image_paths"]) > 0:
matched_img_path = os.path.normpath(matched_entry["original_image_paths"][0])
product_code = os.path.basename(matched_img_path).split('_')[0] # Extract product code
pdf.drawString(100, y_pos, f"Product Code: {product_code}") # Add product code to PDF
#pdf.drawString(100, y_pos - 20, f"Similarity: {sim_score:.4f}")
y_pos -= 40
if os.path.exists(matched_img_path):
pdf.drawImage(matched_img_path, 350, y_pos - 50, width=150, height=100)
y_pos -= 120
pdf.showPage()
pdf.save()
pdf_buffer.seek(0)
st.download_button(
"📥 Download Results PDF",
pdf_buffer,
f"{uploaded_pdf.name}_results.pdf",
"application/pdf"
)
# -----------------------------------------------------------------------------
# 2) IMAGE ONLY
# -----------------------------------------------------------------------------
elif search_method == "Image Only":
st.subheader("Upload an Image")
uploaded_image = st.file_uploader("Select an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
image_obj = Image.open(uploaded_image).convert("RGB")
st.image(image_obj, use_column_width=True)
# Let user choose how many similar products
n_similar = st.slider("How many similar products do you want?", 1, 10, 3)
# Button to trigger the search
if st.button("Find Similar Products"):
results = find_most_similar_products(
image=image_obj,
n=n_similar,
combine_method="none" # image-only
)
if results:
for sim_score, matched_entry in results:
st.subheader(f"🔹 Match (Similarity: {sim_score:.4f})")
st.write(f"**Description:** {matched_entry.get('description','No description')}")
# Display the first image of the matched entry
if "original_image_paths" in matched_entry and matched_entry["original_image_paths"]:
img_path = os.path.normpath(matched_entry["original_image_paths"][0]) # Normalize path
if os.path.exists(img_path):
try:
img_matched = Image.open(img_path).convert("RGB")
st.image(
img_matched,
caption=f"Matched Image (Sim: {sim_score:.4f})",
use_column_width=True
)
except UnidentifiedImageError:
st.warning(f"⚠️ Cannot open image: {img_path}. It might be corrupted.")
else:
st.warning(f"⚠️ Image file not found: {img_path}")
else:
st.warning("No similar products found.")
# -----------------------------------------------------------------------------
# 3) DESCRIPTION ONLY
# -----------------------------------------------------------------------------
elif search_method == "Description Only":
st.subheader("Enter a Description")
user_description = st.text_area("Type or paste your description here")
if user_description.strip():
# Let user choose how many similar products
n_similar = st.slider("How many similar products do you want?", 1, 10, 3)
# Button to trigger the search
if st.button("Find Similar Products"):
results = find_most_similar_products(
description=user_description,
n=n_similar,
combine_method="text-only"
)
if results:
for sim_score, matched_entry in results:
st.subheader(f"🔹 Match (Similarity: {sim_score:.4f})")
st.write(f"**Description:** {matched_entry.get('description','No description')}")
# Display the first image of the matched entry
if "original_image_paths" in matched_entry and matched_entry["original_image_paths"]:
img_path = os.path.normpath(matched_entry["original_image_paths"][0])
if os.path.exists(img_path):
try:
img_matched = Image.open(img_path).convert("RGB")
st.image(
img_matched,
caption=f"Matched Image (Sim: {sim_score:.4f})",
use_column_width=True
)
except UnidentifiedImageError:
st.warning(f"⚠️ Cannot open image: {img_path}. It might be corrupted.")
else:
st.warning(f"⚠️ Image file not found: {img_path}")
else:
st.warning("No similar products found.")
# -----------------------------------------------------------------------------
# 4) BOTH (IMAGE + DESCRIPTION)
# -----------------------------------------------------------------------------
elif search_method == "Both (Image + Description)":
st.subheader("Upload an Image and Enter a Description")
uploaded_image = st.file_uploader("Select an Image", type=["png", "jpg", "jpeg"])
user_description = st.text_area("Type or paste your description here")
if uploaded_image is not None:
image_obj = Image.open(uploaded_image).convert("RGB")
st.image(image_obj, use_column_width=True)
if user_description.strip():
# Let user choose how many similar products
n_similar = st.slider("How many similar products do you want?", 1, 10, 3)
# Button to trigger the search
if st.button("Find Similar Products"):
results = find_most_similar_products(
image=image_obj,
description=user_description,
n=n_similar,
combine_method="average"
)
if results:
for sim_score, matched_entry in results:
st.subheader(f"🔹 Match (Similarity: {sim_score:.4f})")
st.write(f"**Description:** {matched_entry.get('description','No description')}")
# Display the first image of the matched entry
if "original_image_paths" in matched_entry and matched_entry["original_image_paths"]:
img_path = os.path.normpath(matched_entry["original_image_paths"][0])
if os.path.exists(img_path):
try:
img_matched = Image.open(img_path).convert("RGB")
st.image(
img_matched,
caption=f"Matched Image (Sim: {sim_score:.4f})",
use_column_width=True
)
except UnidentifiedImageError:
st.warning(f"⚠️ Cannot open image: {img_path}. It might be corrupted.")
else:
st.warning(f"⚠️ Image file not found: {img_path}")
else:
st.warning("No similar products found.")
|