File size: 4,806 Bytes
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import logging
import traceback
from typing import List

from agentreview.environments import Conversation
from .base import TimeStep
from ..message import Message, MessagePool


logger = logging.getLogger(__name__)


class PaperDecision(Conversation):
    """
    Area chairs make decision based on the meta reviews
    """

    type_name = "paper_decision"

    def __init__(self,
                 player_names: List[str],
                 experiment_setting: dict,
                 paper_ids: List[int] = None,
                 metareviews: List[str] = None,
                 parallel: bool = False,

                 **kwargs):
        """

        Args:
            paper_id (int): the id of the paper, such as 917
            paper_decision (str): the decision of the paper, such as "Accept: notable-top-25%"

        """

        # Inherit from the parent class of `class Conversation`
        super(Conversation, self).__init__(player_names=player_names, parallel=parallel, **kwargs)

        self.paper_ids = paper_ids
        self.metareviews = metareviews
        self.parallel = parallel
        self.experiment_setting = experiment_setting
        self.ac_scoring_method = kwargs.get("ac_scoring_method")
        # The "state" of the environment is maintained by the message pool
        self.message_pool = MessagePool()

        self.ac_decisions = None

        self._current_turn = 0
        self._next_player_index = 0
        self.phase_index = 5  # "ACs make decision based on meta review" is the last phase (Phase 5)

        self._phases = None

    @property
    def phases(self):

        if self._phases is None:
            self._phases = {
                5: {
                    "name": "ac_make_decisions",
                    'speaking_order': ["AC"]
                },
            }
        return self._phases

    def step(self, player_name: str, action: str) -> TimeStep:
        """
        Step function that is called by the arena.

        Args:
            player_name: the name of the player that takes the action
            action: the action that the agents wants to take
        """



        message = Message(
            agent_name=player_name, content=action, turn=self._current_turn
        )
        self.message_pool.append_message(message)

        speaking_order = self.phases[self.phase_index]["speaking_order"]

        # Reached the end of the speaking order. Move to the next phase.

        logging.info(f"Phase {self.phase_index}: {self.phases[self.phase_index]['name']} "
                     f"| Player {self._next_player_index}: {speaking_order[self._next_player_index]}")
        if self._next_player_index == len(speaking_order) - 1:
            self._next_player_index = 0
            logger.info(f"Phase {self.phase_index}: end of the speaking order. Move to Phase {self.phase_index + 1}.")
            self.phase_index += 1
            self._current_turn += 1
        else:
            self._next_player_index += 1

        timestep = TimeStep(
            observation=self.get_observation(),
            reward=self.get_zero_rewards(),
            terminal=self.is_terminal(),
        )  # Return all the messages

        return timestep


    def check_action(self, action: str, player_name: str) -> bool:
        """Check if the action is valid."""

        if player_name.startswith("AC"):

            try:
                self.ac_decisions = self.parse_ac_decisions(action)

            except:
                traceback.print_exc()
                return False

            if not isinstance(self.ac_decisions, dict):
                return False

        return True

    @property
    def ac_decisions(self):
        return self._ac_decisions

    @ac_decisions.setter
    def ac_decisions(self, value):
        self._ac_decisions = value

    def parse_ac_decisions(self, action: str):
        """
        Parse the decisions made by the ACs
        """

        lines = action.split("\n")

        paper2rating = {}

        paper_id, rank = None, None

        for line in lines:

            if line.lower().startswith("paper id:"):
                paper_id = int(line.split(":")[1].split('(')[0].strip())
            elif self.ac_scoring_method == "ranking" and line.lower().startswith("willingness to accept:"):
                rank = int(line.split(":")[1].strip())

            elif self.ac_scoring_method == "recommendation" and line.lower().startswith("decision"):
                rank = line.split(":")[1].strip()



            if paper_id in paper2rating:
                raise ValueError(f"Paper {paper_id} is assigned a rank twice.")

            if paper_id is not None and rank is not None:
                paper2rating[paper_id] = rank
                paper_id, rank = None, None

        return paper2rating