Spaces:
Runtime error
Runtime error
File size: 5,961 Bytes
5ca4e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import argparse
import os
import random
import cv2
import numpy as np
import torch.nn as nn
import torch
import torch.backends.cudnn as cudnn
from PIL import Image
import json
from torchvision.utils import save_image
from utils import data_read
def denormalize(images):
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda()
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda()
new_images = (images - mean[None, :, None, None])/ std[None, :, None, None]
return new_images
def normalize(images):
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda()
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda()
new_images = (images * std[None, :, None, None])+ mean[None, :, None, None]
return new_images
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--model-path", type=str, default="ckpts/llava_llama_2_13b_chat_freeze")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--image_safety_patch", type=str, default=None,
help="image safety patch file")
parser.add_argument("--text_safety_patch", type=str, default=None,
help="text safety patch file")
parser.add_argument("--output_file", type=str, default='./result.jsonl',
help="Output file.")
args = parser.parse_args()
return args
def load_image(image_path):
image = Image.open(image_path).convert('RGB')
return image
# ========================================
# Model Initialization
# ========================================
print('>>> Initializing Models')
from llava.utils import get_model
args = parse_args()
print('model = ', args.model_path)
tokenizer, model, image_processor, model_name = get_model(args)
model.eval()
print('[Initialization Finished]\n')
from llava_utils import prompt_wrapper, generator_qna
my_generator = generator_qna.Generator(model=model, tokenizer=tokenizer)
# ========================================
# Inference
# ========================================
## TODO: expose interface.
qna = data_read('datasets/aokvqa/aokvqa_v1p0_val.json','question',K=1000)
if args.text_safety_patch!=None:
with open(args.text_safety_patch, 'r') as file:
text_safety_patch = file.read().rstrip()
responses = []
acc = []
text_prompt = '%s'
with torch.no_grad():
for i in range(len(qna)):
image_id,question,choices,answer_id,direct_answers = qna[i]
image_id = (12-len(str(image_id)))*'0'+str(image_id)
image = load_image('datasets/coco/val2017/'+image_id+'.jpg')
image.save("llava_original.png")
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].cuda()
if args.image_safety_patch!=None:
image = normalize(image)
safety_patch = torch.load(args.image_safety_patch).cuda()
safe_image = denormalize((image + safety_patch).clamp(0,1))
else:
safe_image = image
print(f" ----- {i} ----")
print(" -- prompt: ---")
if args.text_safety_patch!=None:
#use the below for optimal text safety patch
# question = text_safety_patch + '\n' + question + '\nA. '+choices[0]+'\nB. '+choices[1]+'\nC. '+choices[2]+'\nD. '+choices[3] + "\nAnswer with the option's letter from the given choices directly."
#use the below for heuristic text safety patch
question = question + '\nA. '+choices[0]+'\nB. '+choices[1]+'\nC. '+choices[2]+'\nD. '+choices[3] + "\nAnswer with the option's letter from the given choices directly." + '\n' + text_safety_patch
else:
question = question + '\nA. '+choices[0]+'\nB. '+choices[1]+'\nC. '+choices[2]+'\nD. '+choices[3] + "\nAnswer with the option's letter from the given choices directly."
text_prompt_template = prompt_wrapper.prepare_text_prompt(question)
print(text_prompt_template)
prompt = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template, device=model.device)
response = my_generator.generate(prompt, safe_image).replace("[INST]","").replace("[/INST]","").replace("<<SYS>>","").replace("<</SYS>>","").replace("[SYS]","").replace("[/SYS]","").strip()
if args.text_safety_patch!=None:
response = response.replace(text_safety_patch,"")
print(" -- response: ---")
responses.append({'prompt': question, 'continuation': response})
maxv = 99999
response_id = -1
for idx in range(4):
loc = response.find(chr(ord('A')+idx)+'.')
if loc!=-1 and maxv>loc:
maxv = loc
response_id = chr(ord('A')+idx)
loc = response.find(chr(ord('A')+idx)+'\n')
if loc!=-1 and maxv>loc:
maxv = loc
response_id = chr(ord('A')+idx)
loc = response.find(chr(ord('A')+idx)+' ')
if loc==0 and maxv>loc:
maxv = loc
response_id = chr(ord('A')+idx)
loc = response.find(chr(ord('A')+idx)+'\t')
if loc==0 and maxv>loc:
maxv = loc
response_id = chr(ord('A')+idx)
answer_id = chr(ord('A')+answer_id)
print(response,response_id,answer_id)
acc.append(response_id==answer_id if len(response)!=0 else 0)
print('overall_accuracy = {}'.format(np.average(acc)))
with open(args.output_file, 'w') as f:
print('overall_accuracy = {}'.format(np.average(acc)),file=f)
f.write(json.dumps({
"args": vars(args),
"prompt": text_prompt
}))
f.write("\n")
for li in responses:
f.write(json.dumps(li))
f.write("\n")
|