File size: 1,612 Bytes
5ca4e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
set -x

MODEL=minigpt4

GPU_ID=4

for BASELINE_ATTACK_MODE in blur compress; do
  for TASK in unconstrained constrained qna; do

    INFERENCE_FILE="outputs/${MODEL}/inference_qna_${MODEL}_${BASELINE_ATTACK_MODE}"
    METRIC_FILE="outputs/${MODEL}/metric_qna_${MODEL}_${BASELINE_ATTACK_MODE}"
    SUMMARY_FILE="outputs/${MODEL}/summary_qna_${MODEL}_${BASELINE_ATTACK_MODE}"


    if [ "${TASK}" = "constrained" ]; then
      echo "Running constrained"
      python minigpt_constrained_inference.py --output_file ${INFERENCE_FILE} \
        --gpu-id 3 \
        --do_baseline \
        --baseline_mode 1 \
        --baseline_attack_mode ${BASELINE_ATTACK_MODE}

    elif [ "${TASK}" = "unconstrained" ]; then
      echo "Running unconstrained"
      python minigpt_unconstrained_inference.py --output_file ${INFERENCE_FILE} \
       --gpu-id 4 \
       --do_baseline \
       --baseline_mode 1 \
       --baseline_attack_mode ${BASELINE_ATTACK_MODE}

    elif [ "${TASK}" = "qna" ]; then
      echo "Running qna"
      python minigpt_qna.py \
       --image_path ${ATTACK_MODE}_attack_images/adversarial_ \
       --output_file ${INFERENCE_FILE} \
       --gpu-id ${GPU_ID} \
       --do_baseline \
       --baseline_mode 1 \
       --baseline_attack_mode ${BASELINE_ATTACK_MODE}

    else
      echo "Wrong Implementation"
      exit 1
    fi

    CUDA_VISIBLE_DEVICES=4 python get_metric.py --input ${INFERENCE_FILE} \
      --output ${METRIC_FILE} \
      --perplexity ${SUMMARY_FILE} \
      --device cuda \
    

    python cal_metrics.py --input ${METRIC_FILE} \
      --output ${SUMMARY_FILE}

  done
done