Spaces:
Runtime error
Runtime error
import torch | |
from tqdm import tqdm | |
import random | |
from minigpt_utils import prompt_wrapper, generator | |
from torchvision.utils import save_image | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
def normalize(images): | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda() | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda() | |
images = images - mean[None, :, None, None] | |
images = images / std[None, :, None, None] | |
return images | |
def denormalize(images): | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda() | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda() | |
images = images * std[None, :, None, None] | |
images = images + mean[None, :, None, None] | |
return images | |
class Attacker: | |
def __init__(self, args, model, targets, device='cuda:0', is_rtp=False): | |
self.args = args | |
self.model = model | |
self.device = device | |
self.is_rtp = is_rtp | |
self.targets = targets | |
self.num_targets = len(targets) | |
self.loss_buffer = [] | |
# freeze and set to eval model: | |
self.model.eval() | |
self.model.requires_grad_(False) | |
def attack_unconstrained(self, text_prompt, img, batch_size = 8, num_iter=2000, alpha=1/255): | |
print('>>> batch_size:', batch_size) | |
my_generator = generator.Generator(model=self.model) | |
adv_noise = torch.rand_like(img).to(self.device) # [0,1] | |
adv_noise.requires_grad_(True) | |
adv_noise.retain_grad() | |
for t in tqdm(range(num_iter + 1)): | |
batch_targets = random.sample(self.targets, batch_size) | |
text_prompts = [text_prompt] * batch_size | |
x_adv = normalize(adv_noise) | |
prompt = prompt_wrapper.Prompt(model=self.model, text_prompts=text_prompts, img_prompts=[[x_adv]]) | |
prompt.img_embs = prompt.img_embs * batch_size | |
prompt.update_context_embs() | |
target_loss = self.attack_loss(prompt, batch_targets) | |
target_loss.backward() | |
adv_noise.data = (adv_noise.data - alpha * adv_noise.grad.detach().sign()).clamp(0, 1) | |
adv_noise.grad.zero_() | |
self.model.zero_grad() | |
self.loss_buffer.append(target_loss.item()) | |
print("target_loss: %f" % ( | |
target_loss.item()) | |
) | |
if t % 20 == 0: | |
self.plot_loss() | |
if t % 100 == 0: | |
print('######### Output - Iter = %d ##########' % t) | |
x_adv = normalize(adv_noise) | |
prompt.update_img_prompts([[x_adv]]) | |
prompt.img_embs = prompt.img_embs * batch_size | |
prompt.update_context_embs() | |
with torch.no_grad(): | |
response, _ = my_generator.generate(prompt) | |
print('>>>', response) | |
adv_img_prompt = denormalize(x_adv).detach().cpu() | |
adv_img_prompt = adv_img_prompt.squeeze(0) | |
save_image(adv_img_prompt, '%s/bad_prompt_temp_%d.bmp' % (self.args.save_dir, t)) | |
return adv_img_prompt | |
def attack_constrained(self, text_prompt, img, batch_size = 8, num_iter=2000, alpha=1/255, epsilon = 128/255 ): | |
print('>>> batch_size:', batch_size) | |
my_generator = generator.Generator(model=self.model) | |
adv_noise = torch.rand_like(img).to(self.device) * 2 * epsilon - epsilon | |
x = denormalize(img).clone().to(self.device) | |
adv_noise.data = (adv_noise.data + x.data).clamp(0, 1) - x.data | |
adv_noise.requires_grad_(True) | |
adv_noise.retain_grad() | |
for t in tqdm(range(num_iter + 1)): | |
batch_targets = random.sample(self.targets, batch_size) | |
text_prompts = [text_prompt] * batch_size | |
x_adv = x + adv_noise | |
x_adv = normalize(x_adv) | |
prompt = prompt_wrapper.Prompt(model=self.model, text_prompts=text_prompts, img_prompts=[[x_adv]]) | |
prompt.img_embs = prompt.img_embs * batch_size | |
prompt.update_context_embs() | |
target_loss = self.attack_loss(prompt, batch_targets) | |
target_loss.backward() | |
adv_noise.data = (adv_noise.data - alpha * adv_noise.grad.detach().sign()).clamp(-epsilon, epsilon) | |
adv_noise.data = (adv_noise.data + x.data).clamp(0, 1) - x.data | |
adv_noise.grad.zero_() | |
self.model.zero_grad() | |
self.loss_buffer.append(target_loss.item()) | |
print("target_loss: %f" % ( | |
target_loss.item()) | |
) | |
if t % 20 == 0: | |
self.plot_loss() | |
if t % 100 == 0: | |
print('######### Output - Iter = %d ##########' % t) | |
x_adv = x + adv_noise | |
x_adv = normalize(x_adv) | |
prompt.update_img_prompts([[x_adv]]) | |
prompt.img_embs = prompt.img_embs * batch_size | |
prompt.update_context_embs() | |
with torch.no_grad(): | |
response, _ = my_generator.generate(prompt) | |
print('>>>', response) | |
adv_img_prompt = denormalize(x_adv).detach().cpu() | |
adv_img_prompt = adv_img_prompt.squeeze(0) | |
save_image(adv_img_prompt, '%s/bad_prompt_temp_%d.bmp' % (self.args.save_dir, t)) | |
return adv_img_prompt | |
def plot_loss(self): | |
sns.set_theme() | |
num_iters = len(self.loss_buffer) | |
x_ticks = list(range(0, num_iters)) | |
# Plot and label the training and validation loss values | |
plt.plot(x_ticks, self.loss_buffer, label='Target Loss') | |
# Add in a title and axes labels | |
plt.title('Loss Plot') | |
plt.xlabel('Iters') | |
plt.ylabel('Loss') | |
# Display the plot | |
plt.legend(loc='best') | |
plt.savefig('%s/loss_curve.png' % (self.args.save_dir)) | |
plt.clf() | |
torch.save(self.loss_buffer, '%s/loss' % (self.args.save_dir)) | |
def attack_loss(self, prompts, targets): | |
context_embs = prompts.context_embs | |
if len(context_embs) == 1: | |
context_embs = context_embs * len(targets) # expand to fit the batch_size | |
assert len(context_embs) == len(targets), f"Unmathced batch size of prompts and targets {len(context_embs)} != {len(targets)}" | |
batch_size = len(targets) | |
self.model.llama_tokenizer.padding_side = "right" | |
to_regress_tokens = self.model.llama_tokenizer( | |
targets, | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.model.max_txt_len, | |
add_special_tokens=False | |
).to(self.device) | |
to_regress_embs = self.model.llama_model.model.embed_tokens(to_regress_tokens.input_ids) | |
bos = torch.ones([1, 1], | |
dtype=to_regress_tokens.input_ids.dtype, | |
device=to_regress_tokens.input_ids.device) * self.model.llama_tokenizer.bos_token_id | |
bos_embs = self.model.llama_model.model.embed_tokens(bos) | |
pad = torch.ones([1, 1], | |
dtype=to_regress_tokens.input_ids.dtype, | |
device=to_regress_tokens.input_ids.device) * self.model.llama_tokenizer.pad_token_id | |
pad_embs = self.model.llama_model.model.embed_tokens(pad) | |
T = to_regress_tokens.input_ids.masked_fill( | |
to_regress_tokens.input_ids == self.model.llama_tokenizer.pad_token_id, -100 | |
) | |
pos_padding = torch.argmin(T, dim=1) # a simple trick to find the start position of padding | |
input_embs = [] | |
targets_mask = [] | |
target_tokens_length = [] | |
context_tokens_length = [] | |
seq_tokens_length = [] | |
for i in range(batch_size): | |
pos = int(pos_padding[i]) | |
if T[i][pos] == -100: | |
target_length = pos | |
else: | |
target_length = T.shape[1] | |
targets_mask.append(T[i:i+1, :target_length]) | |
input_embs.append(to_regress_embs[i:i+1, :target_length]) # omit the padding tokens | |
context_length = context_embs[i].shape[1] | |
seq_length = target_length + context_length | |
target_tokens_length.append(target_length) | |
context_tokens_length.append(context_length) | |
seq_tokens_length.append(seq_length) | |
max_length = max(seq_tokens_length) | |
attention_mask = [] | |
for i in range(batch_size): | |
# masked out the context from loss computation | |
context_mask =( | |
torch.ones([1, context_tokens_length[i] + 1], | |
dtype=torch.long).to(self.device).fill_(-100) # plus one for bos | |
) | |
# padding to align the length | |
num_to_pad = max_length - seq_tokens_length[i] | |
padding_mask = ( | |
torch.ones([1, num_to_pad], | |
dtype=torch.long).to(self.device).fill_(-100) | |
) | |
targets_mask[i] = torch.cat( [context_mask, targets_mask[i], padding_mask], dim=1 ) | |
input_embs[i] = torch.cat( [bos_embs, context_embs[i], input_embs[i], | |
pad_embs.repeat(1, num_to_pad, 1)], dim=1 ) | |
attention_mask.append( torch.LongTensor( [[1]* (1+seq_tokens_length[i]) + [0]*num_to_pad ] ) ) | |
targets = torch.cat( targets_mask, dim=0 ).to(self.device) | |
inputs_embs = torch.cat( input_embs, dim=0 ).to(self.device) | |
attention_mask = torch.cat(attention_mask, dim=0).to(self.device) | |
outputs = self.model.llama_model( | |
inputs_embeds=inputs_embs, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=targets, | |
) | |
loss = outputs.loss | |
return loss |