Spaces:
Sleeping
Sleeping
File size: 1,392 Bytes
cf265ad 1f50290 cf265ad 877618b cf265ad 1f50290 cf265ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
from transformers import pipeline
# Available languages and their corresponding models
available_languages = {
"French": "Helsinki-NLP/opus-mt-en-fr",
"German": "Helsinki-NLP/opus-mt-en-de",
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
"Japanese": "Helsinki-NLP/opus-mt-en-jap",
"Russian": "Helsinki-NLP/opus-mt-en-ru",
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
"Urdu": "Helsinki-NLP/opus-mt-en-ur",
}
# Streamlit app title
st.title("Language Translator")
# User input for text to translate
text_to_translate = st.text_area("Enter text in English:", "")
# Language selection
target_language = st.selectbox("Select the target language:", list(available_languages.keys()))
# Load the translation model based on the selected language
translator = pipeline("translation", model=available_languages[target_language])
# Translate button
if st.button("Translate"):
if text_to_translate:
# Perform the translation
translation = translator(text_to_translate)
# Display the translated text
st.write(f"**Translated text in {target_language}:**")
st.write(translation[0]['translation_text'])
else:
st.warning("Please enter some text to translate.")
# Footer
st.markdown("Powered by [Hugging Face Transformers](https://huggingface.co/transformers/).")
|