File size: 1,392 Bytes
cf265ad
 
 
 
 
1f50290
 
 
 
cf265ad
 
 
877618b
cf265ad
 
 
 
 
 
 
 
 
 
 
1f50290
cf265ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
from transformers import pipeline

# Available languages and their corresponding models
available_languages = {
    "French": "Helsinki-NLP/opus-mt-en-fr",
    "German": "Helsinki-NLP/opus-mt-en-de",
    "Spanish": "Helsinki-NLP/opus-mt-en-es",
    "Chinese": "Helsinki-NLP/opus-mt-en-zh",
    "Japanese": "Helsinki-NLP/opus-mt-en-jap",
    "Russian": "Helsinki-NLP/opus-mt-en-ru",
    "Arabic": "Helsinki-NLP/opus-mt-en-ar",
    "Urdu": "Helsinki-NLP/opus-mt-en-ur",
}

# Streamlit app title
st.title("Language Translator")

# User input for text to translate
text_to_translate = st.text_area("Enter text in English:", "")

# Language selection
target_language = st.selectbox("Select the target language:", list(available_languages.keys()))

# Load the translation model based on the selected language
translator = pipeline("translation", model=available_languages[target_language])

# Translate button
if st.button("Translate"):
    if text_to_translate:
        # Perform the translation
        translation = translator(text_to_translate)
        # Display the translated text
        st.write(f"**Translated text in {target_language}:**")
        st.write(translation[0]['translation_text'])
    else:
        st.warning("Please enter some text to translate.")

# Footer
st.markdown("Powered by [Hugging Face Transformers](https://huggingface.co/transformers/).")