Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Streamlit app title
|
5 |
+
st.title("Text to Speech Converter")
|
6 |
+
|
7 |
+
# User input for text to convert to speech
|
8 |
+
text_input = st.text_area("Enter text to convert to speech:")
|
9 |
+
|
10 |
+
# Load the Hugging Face TTS model
|
11 |
+
tts_pipeline = pipeline("text-to-speech", model="espnet/kan-bayashi-ljspeech-vits")
|
12 |
+
|
13 |
+
# Button to generate speech
|
14 |
+
if st.button("Convert to Speech"):
|
15 |
+
if text_input:
|
16 |
+
# Generate the speech
|
17 |
+
tts_output = tts_pipeline(text_input)
|
18 |
+
|
19 |
+
# Save the generated speech to a file
|
20 |
+
with open("output.wav", "wb") as f:
|
21 |
+
f.write(tts_output["wav"])
|
22 |
+
|
23 |
+
# Display the audio player in Streamlit
|
24 |
+
st.audio("output.wav")
|
25 |
+
else:
|
26 |
+
st.warning("Please enter some text to convert.")
|
27 |
+
|
28 |
+
# Footer
|
29 |
+
st.markdown("Powered by [Hugging Face Transformers](https://huggingface.co/transformers/).")
|