Ahtisham1583 commited on
Commit
6fc6f3c
·
1 Parent(s): 12b9aeb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -3
app.py CHANGED
@@ -117,11 +117,25 @@ plt.imshow(wordcloud)
117
  plt.axis('off')
118
  plt.show()
119
  fig.savefig("word1.png", dpi=900)
120
-
121
  from sklearn.feature_extraction.text import CountVectorizer
122
  import re
123
- cv=CountVectorizer(max_df=0.8,stop_words=stop_words, max_features=10000, ngram_range=(1,3))
124
- X=cv.fit_transform(corpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
  from sklearn.feature_extraction.text import CountVectorizer
127
 
 
117
  plt.axis('off')
118
  plt.show()
119
  fig.savefig("word1.png", dpi=900)
 
120
  from sklearn.feature_extraction.text import CountVectorizer
121
  import re
122
+
123
+ # Assuming you have the 'corpus' defined
124
+ # and 'stop_words' defined as in your previous code
125
+
126
+ # Create a CountVectorizer with predefined English stop words
127
+ cv = CountVectorizer(max_df=0.8, stop_words='english', max_features=10000, ngram_range=(1, 3))
128
+ X = cv.fit_transform(corpus)
129
+
130
+ # Alternatively, use your custom stop words
131
+ custom_stop_words = ['same', 'hers', 'they', 'with', 'if', 'y', 'iv', 'new', ...] # Add your custom stop words
132
+ cv = CountVectorizer(max_df=0.8, stop_words=custom_stop_words, max_features=10000, ngram_range=(1, 3))
133
+ X = cv.fit_transform(corpus)
134
+
135
+ #from sklearn.feature_extraction.text import CountVectorizer
136
+ #import re
137
+ #cv=CountVectorizer(max_df=0.8,stop_words=stop_words, max_features=10000, ngram_range=(1,3))
138
+ #X=cv.fit_transform(corpus)
139
 
140
  from sklearn.feature_extraction.text import CountVectorizer
141