Commit
·
2660746
1
Parent(s):
d9fcdcf
Update app.py
Browse files
app.py
CHANGED
@@ -8,90 +8,47 @@ import matplotlib.image as mpimg
|
|
8 |
def get_label(file_name):
|
9 |
return file_name.split('-')[0]
|
10 |
|
11 |
-
# Function to prepare data (similar to your code)
|
12 |
-
def prepare_data(food_path, label_a, label_b):
|
13 |
-
for img in get_image_files(food_path):
|
14 |
-
if label_a in str(img):
|
15 |
-
img.rename(f"{img.parent}/{label_a}-{img.name}")
|
16 |
-
elif label_b in str(img):
|
17 |
-
img.rename(f"{img.parent}/{label_b}-{img.name}")
|
18 |
-
else:
|
19 |
-
os.remove(img)
|
20 |
-
|
21 |
-
# Function to train the model
|
22 |
-
def train_model(food_path, label_func):
|
23 |
-
dls = ImageDataLoaders.from_name_func(
|
24 |
-
food_path, get_image_files(food_path), valid_pct=0.2, seed=420,
|
25 |
-
label_func=label_func, item_tfms=Resize(230)
|
26 |
-
)
|
27 |
-
|
28 |
-
learn = cnn_learner(dls, resnet34, metrics=error_rate, pretrained=True)
|
29 |
-
learn.fine_tune(epochs=1)
|
30 |
-
|
31 |
-
return learn
|
32 |
-
|
33 |
# Streamlit app
|
34 |
def main():
|
35 |
st.title("Food Classifier Streamlit App")
|
36 |
|
|
|
|
|
|
|
|
|
37 |
# Sidebar options
|
38 |
-
options = ["
|
39 |
choice = st.sidebar.selectbox("Choose an option", options)
|
40 |
|
41 |
-
if choice == "
|
42 |
-
st.subheader("Training the Model")
|
43 |
-
food_path = Path("~/.fastai/data/food-101/food-101").expanduser()
|
44 |
-
if not food_path.exists():
|
45 |
-
try:
|
46 |
-
food_path = untar_data(URLs.FOOD)
|
47 |
-
except FileExistsError:
|
48 |
-
st.warning("Data directory already exists. Skipping download.")
|
49 |
-
label_a = st.text_input("Enter label A:", "samosa")
|
50 |
-
label_b = st.text_input("Enter label B:", "hot_and_sour_soup")
|
51 |
-
|
52 |
-
if st.button("Train Model"):
|
53 |
-
prepare_data(food_path, label_a, label_b)
|
54 |
-
learn = train_model(food_path, get_label)
|
55 |
-
st.session_state.model = learn # Save the model to session state
|
56 |
-
st.success("Model trained successfully!")
|
57 |
-
|
58 |
-
elif choice == "Upload Image":
|
59 |
st.subheader("Upload Your Own Images")
|
60 |
-
|
61 |
-
st.warning("Please train the model first.")
|
62 |
-
else:
|
63 |
-
uploaded_files = st.file_uploader("Choose images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
elif choice == "Test Random Images":
|
75 |
st.subheader("Test Using Images in Dataset")
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
img_path = get_image_files(food_path)[random_index]
|
82 |
-
img = mpimg.imread(img_path)
|
83 |
-
label, _, probs = st.session_state.model.predict(img)
|
84 |
|
85 |
-
|
86 |
|
87 |
elif choice == "Confusion Matrix":
|
88 |
st.subheader("Confusion Matrix")
|
89 |
-
|
90 |
-
|
91 |
-
else:
|
92 |
-
interp = ClassificationInterpretation.from_learner(st.session_state.model)
|
93 |
-
st.pyplot(interp.plot_confusion_matrix())
|
94 |
|
95 |
# Run the Streamlit app
|
96 |
if __name__ == "__main__":
|
97 |
main()
|
|
|
|
8 |
def get_label(file_name):
|
9 |
return file_name.split('-')[0]
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Streamlit app
|
12 |
def main():
|
13 |
st.title("Food Classifier Streamlit App")
|
14 |
|
15 |
+
# Load the pre-trained model
|
16 |
+
model_path = "export.pkl" # Update with the correct path to your export.pkl
|
17 |
+
model = load_learner(model_path)
|
18 |
+
|
19 |
# Sidebar options
|
20 |
+
options = ["Upload Image", "Test Random Images", "Confusion Matrix"]
|
21 |
choice = st.sidebar.selectbox("Choose an option", options)
|
22 |
|
23 |
+
if choice == "Upload Image":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
st.subheader("Upload Your Own Images")
|
25 |
+
uploaded_files = st.file_uploader("Choose images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
|
|
|
|
|
|
26 |
|
27 |
+
if uploaded_files:
|
28 |
+
for img in uploaded_files:
|
29 |
+
img = PILImage.create(img)
|
30 |
+
label, _, probs = model.predict(img)
|
31 |
|
32 |
+
st.image(img, caption=f"This is a {label}.")
|
33 |
+
st.write(f"{label}: {probs[1].item():.6f}")
|
34 |
+
st.write(f"{label}: {probs[0].item():.6f}")
|
35 |
|
36 |
elif choice == "Test Random Images":
|
37 |
st.subheader("Test Using Images in Dataset")
|
38 |
+
for i in range(0, 5): # Change 5 to the number of images you want to display
|
39 |
+
random_index = random.randint(0, len(get_image_files(food_path)) - 1)
|
40 |
+
img_path = get_image_files(food_path)[random_index]
|
41 |
+
img = mpimg.imread(img_path)
|
42 |
+
label, _, probs = model.predict(img)
|
|
|
|
|
|
|
43 |
|
44 |
+
st.image(img, caption=f"Predicted label: {label}")
|
45 |
|
46 |
elif choice == "Confusion Matrix":
|
47 |
st.subheader("Confusion Matrix")
|
48 |
+
interp = ClassificationInterpretation.from_learner(model)
|
49 |
+
st.pyplot(interp.plot_confusion_matrix())
|
|
|
|
|
|
|
50 |
|
51 |
# Run the Streamlit app
|
52 |
if __name__ == "__main__":
|
53 |
main()
|
54 |
+
|