Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
|
4 |
+
# Replace with your actual model ID or access token from Hugging Face Hub
|
5 |
+
model_id = "your-model-id"
|
6 |
+
|
7 |
+
# Load the pre-trained sentiment analysis model and tokenizer from Hugging Face Hub
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
+
|
11 |
+
def classify_sentiment(text):
|
12 |
+
"""
|
13 |
+
Function to preprocess text, make predictions using the loaded model,
|
14 |
+
and return the predicted sentiment.
|
15 |
+
"""
|
16 |
+
# Preprocess text (tokenization)
|
17 |
+
encoded_text = tokenizer(text, return_tensors="pt")
|
18 |
+
|
19 |
+
# Make prediction using the loaded model
|
20 |
+
output = model(**encoded_text)
|
21 |
+
predictions = output.logits.argmax(-1)
|
22 |
+
|
23 |
+
# Map predicted class label to sentiment category
|
24 |
+
sentiment_mapping = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
25 |
+
sentiment = sentiment_mapping[predictions.item()]
|
26 |
+
|
27 |
+
return sentiment
|
28 |
+
|
29 |
+
def main():
|
30 |
+
"""
|
31 |
+
Streamlit app for sentiment analysis
|
32 |
+
"""
|
33 |
+
st.title("Sentiment Analysis App")
|
34 |
+
text_input = st.text_input("Enter text to analyze:")
|
35 |
+
|
36 |
+
if text_input:
|
37 |
+
sentiment = classify_sentiment(text_input)
|
38 |
+
st.write(f"Predicted Sentiment: {sentiment}")
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
main()
|