Ahtisham1583 commited on
Commit
a86c83d
·
verified ·
1 Parent(s): 3db6f95

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -20
app.py CHANGED
@@ -1,24 +1,10 @@
1
- import numpy as np
2
- import pandas as pd
3
- import tensorflow as tf
4
- from tensorflow.keras.preprocessing.sequence import pad_sequences
5
- from tensorflow.keras.preprocessing.text import Tokenizer
6
  import gradio as gr
7
 
8
- # Load the trained model
9
- model_path = "/content/drive/MyDrive/Twitter_data/sentiment_analysis_model.h5"
10
- model = tf.keras.models.load_model(model_path)
11
-
12
- # Load the tokenizer
13
- tokenizer_path = "/content/drive/MyDrive/Twitter_data/tokenizer.pickle"
14
- with open(tokenizer_path, 'rb') as handle:
15
- tokenizer = pickle.load(handle)
16
-
17
- # Define a function for sentiment classification
18
  def classify_sentiment(text):
19
- # Preprocess the text
20
  text_sequence = tokenizer.texts_to_sequences([text])
21
- padded_sequence = pad_sequences(text_sequence, maxlen=100)
22
 
23
  # Make prediction using the trained model
24
  prediction = model.predict(padded_sequence)
@@ -32,6 +18,9 @@ def classify_sentiment(text):
32
 
33
  return sentiment
34
 
35
- # Create Gradio interface
36
- iface = gr.Interface(fn=classify_sentiment, inputs="text", outputs="text", title="Sentiment Analysis", description="Enter a sentence to classify its sentiment.")
37
- iface.launch()
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
+ # Define a function to classify sentiment
 
 
 
 
 
 
 
 
 
4
  def classify_sentiment(text):
5
+ # Preprocess the text (tokenization, padding, etc.)
6
  text_sequence = tokenizer.texts_to_sequences([text])
7
+ padded_sequence = pad_sequences(text_sequence, maxlen=max_seq_length)
8
 
9
  # Make prediction using the trained model
10
  prediction = model.predict(padded_sequence)
 
18
 
19
  return sentiment
20
 
21
+ # Define Gradio interface
22
+ input_text = gr.inputs.Textbox(lines=5, label="Enter your text")
23
+ output_sentiment = gr.outputs.Textbox(label="Sentiment")
24
+
25
+ # Launch Gradio app
26
+ gr.Interface(fn=classify_sentiment, inputs=input_text, outputs=output_sentiment, title="Sentiment Analysis", description="Enter a text to classify its sentiment.").launch()