Spaces:
Sleeping
Sleeping
Rename _app.py to app.py
Browse files
_app.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
|
4 |
-
# Define all pipelines
|
5 |
-
def load_pipelines():
|
6 |
-
pipelines = {
|
7 |
-
"GPT-2 Original": pipeline("text-generation", model="gpt2"),
|
8 |
-
"GPT-2 Medium": pipeline("text-generation", model="gpt2-medium"),
|
9 |
-
"DistilGPT-2": pipeline("text-generation", model="distilgpt2"),
|
10 |
-
"German GPT-2": pipeline("text-generation", model="german-nlp-group/german-gpt2"),
|
11 |
-
"German Wechsel GPT-2": pipeline("text-generation", model="benjamin/gpt2-wechsel-german"),
|
12 |
-
"T5 Base": pipeline("text-generation", model="t5-base"),
|
13 |
-
"T5 Large": pipeline("text-generation", model="t5-large"),
|
14 |
-
"Text Classification": pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english"),
|
15 |
-
"Sentiment Analysis": pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
16 |
-
}
|
17 |
-
return pipelines
|
18 |
-
|
19 |
-
def respond(
|
20 |
-
message,
|
21 |
-
history: list[tuple[str, str]],
|
22 |
-
system_message,
|
23 |
-
model_name,
|
24 |
-
max_tokens,
|
25 |
-
temperature,
|
26 |
-
top_p,
|
27 |
-
):
|
28 |
-
# Load pipelines
|
29 |
-
pipelines = load_pipelines()
|
30 |
-
pipe = pipelines.get(model_name)
|
31 |
-
|
32 |
-
if not pipe:
|
33 |
-
return "Error: Model not found."
|
34 |
-
|
35 |
-
# For text generation models
|
36 |
-
if model_name in ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2",
|
37 |
-
"German GPT-2", "German Wechsel GPT-2",
|
38 |
-
"T5 Base", "T5 Large"]:
|
39 |
-
# Prepare full prompt
|
40 |
-
full_history = ' '.join([f"{msg[0]} {msg[1] or ''}" for msg in history]) if history else ''
|
41 |
-
full_prompt = f"{system_message}\n{full_history}\nUser: {message}\nAssistant:"
|
42 |
-
|
43 |
-
try:
|
44 |
-
response = pipe(
|
45 |
-
full_prompt,
|
46 |
-
max_length=len(full_prompt) + max_tokens,
|
47 |
-
temperature=temperature,
|
48 |
-
top_p=top_p,
|
49 |
-
num_return_sequences=1
|
50 |
-
)[0]['generated_text']
|
51 |
-
|
52 |
-
# Extract just the new assistant response
|
53 |
-
assistant_response = response[len(full_prompt):].strip()
|
54 |
-
return assistant_response
|
55 |
-
except Exception as e:
|
56 |
-
return f"Generation error: {e}"
|
57 |
-
|
58 |
-
# For classification and sentiment models
|
59 |
-
elif model_name == "Text Classification":
|
60 |
-
try:
|
61 |
-
result = pipe(message)[0]
|
62 |
-
return f"Classification: {result['label']} (Confidence: {result['score']:.2f})"
|
63 |
-
except Exception as e:
|
64 |
-
return f"Classification error: {e}"
|
65 |
-
|
66 |
-
elif model_name == "Sentiment Analysis":
|
67 |
-
try:
|
68 |
-
result = pipe(message)[0]
|
69 |
-
return f"Sentiment: {result['label']} (Confidence: {result['score']:.2f})"
|
70 |
-
except Exception as e:
|
71 |
-
return f"Sentiment analysis error: {e}"
|
72 |
-
|
73 |
-
def create_chat_interface():
|
74 |
-
"""Create Gradio ChatInterface with model selection."""
|
75 |
-
demo = gr.ChatInterface(
|
76 |
-
respond,
|
77 |
-
additional_inputs=[
|
78 |
-
gr.Textbox(value="You are a helpful assistant.", label="System message"),
|
79 |
-
gr.Dropdown(
|
80 |
-
["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2",
|
81 |
-
"German GPT-2", "German Wechsel GPT-2",
|
82 |
-
"T5 Base", "T5 Large",
|
83 |
-
"Text Classification", "Sentiment Analysis"],
|
84 |
-
value="GPT-2 Original",
|
85 |
-
label="Select Model"
|
86 |
-
),
|
87 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
88 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
89 |
-
gr.Slider(
|
90 |
-
minimum=0.1,
|
91 |
-
maximum=1.0,
|
92 |
-
value=0.95,
|
93 |
-
step=0.05,
|
94 |
-
label="Top-p (nucleus sampling)",
|
95 |
-
),
|
96 |
-
]
|
97 |
-
)
|
98 |
-
return demo
|
99 |
-
|
100 |
-
if __name__ == "__main__":
|
101 |
-
chat_interface = create_chat_interface()
|
102 |
-
chat_interface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import os
|
4 |
+
from huggingface_hub import login
|
5 |
+
|
6 |
+
# Hugging Face login function
|
7 |
+
def hf_login(token):
|
8 |
+
if token:
|
9 |
+
try:
|
10 |
+
login(token)
|
11 |
+
return "Successfully logged in to Hugging Face Hub"
|
12 |
+
except Exception as e:
|
13 |
+
return f"Login error: {str(e)}"
|
14 |
+
return "No token provided"
|
15 |
+
|
16 |
+
# Define all pipelines with lazy loading
|
17 |
+
def get_pipeline(model_name):
|
18 |
+
"""Lazy load pipeline only when needed"""
|
19 |
+
try:
|
20 |
+
if model_name == "GPT-2 Original":
|
21 |
+
return pipeline("text-generation", model="gpt2")
|
22 |
+
elif model_name == "GPT-2 Medium":
|
23 |
+
return pipeline("text-generation", model="gpt2-medium")
|
24 |
+
elif model_name == "DistilGPT-2":
|
25 |
+
return pipeline("text-generation", model="distilgpt2")
|
26 |
+
elif model_name == "German GPT-2":
|
27 |
+
return pipeline("text-generation", model="german-nlp-group/german-gpt2")
|
28 |
+
elif model_name == "German Wechsel GPT-2":
|
29 |
+
return pipeline("text-generation", model="benjamin/gpt2-wechsel-german")
|
30 |
+
elif model_name == "T5 Base":
|
31 |
+
return pipeline("text2text-generation", model="t5-base")
|
32 |
+
elif model_name == "T5 Large":
|
33 |
+
return pipeline("text2text-generation", model="t5-large")
|
34 |
+
elif model_name == "Text Classification":
|
35 |
+
return pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
36 |
+
elif model_name == "Sentiment Analysis":
|
37 |
+
return pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
38 |
+
else:
|
39 |
+
raise ValueError(f"Unknown model: {model_name}")
|
40 |
+
except Exception as e:
|
41 |
+
raise Exception(f"Error loading model {model_name}: {str(e)}")
|
42 |
+
|
43 |
+
def respond(
|
44 |
+
message,
|
45 |
+
history: list[tuple[str, str]],
|
46 |
+
system_message,
|
47 |
+
model_name,
|
48 |
+
max_tokens,
|
49 |
+
temperature,
|
50 |
+
top_p,
|
51 |
+
):
|
52 |
+
try:
|
53 |
+
# Get the appropriate pipeline
|
54 |
+
pipe = get_pipeline(model_name)
|
55 |
+
|
56 |
+
# For text generation models
|
57 |
+
if model_name in ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2",
|
58 |
+
"German GPT-2", "German Wechsel GPT-2"]:
|
59 |
+
# Prepare full prompt
|
60 |
+
full_history = ' '.join([f"User: {msg[0]}\nAssistant: {msg[1] or ''}" for msg in history]) if history else ''
|
61 |
+
full_prompt = f"{system_message}\n{full_history}\nUser: {message}\nAssistant:"
|
62 |
+
|
63 |
+
response = pipe(
|
64 |
+
full_prompt,
|
65 |
+
max_length=len(full_prompt.split()) + max_tokens,
|
66 |
+
temperature=temperature,
|
67 |
+
top_p=top_p,
|
68 |
+
num_return_sequences=1
|
69 |
+
)[0]['generated_text']
|
70 |
+
|
71 |
+
# Extract just the new assistant response
|
72 |
+
assistant_response = response[len(full_prompt):].strip()
|
73 |
+
return assistant_response
|
74 |
+
|
75 |
+
# For T5 models
|
76 |
+
elif model_name in ["T5 Base", "T5 Large"]:
|
77 |
+
# T5 doesn't handle chat history the same way, so simplify
|
78 |
+
input_text = f"{message}"
|
79 |
+
|
80 |
+
response = pipe(
|
81 |
+
input_text,
|
82 |
+
max_length=max_tokens,
|
83 |
+
temperature=temperature,
|
84 |
+
top_p=top_p,
|
85 |
+
num_return_sequences=1
|
86 |
+
)[0]['generated_text']
|
87 |
+
|
88 |
+
return response
|
89 |
+
|
90 |
+
# For classification and sentiment models
|
91 |
+
elif model_name == "Text Classification":
|
92 |
+
result = pipe(message)[0]
|
93 |
+
return f"Classification: {result['label']} (Confidence: {result['score']:.2f})"
|
94 |
+
|
95 |
+
elif model_name == "Sentiment Analysis":
|
96 |
+
result = pipe(message)[0]
|
97 |
+
return f"Sentiment: {result['label']} (Confidence: {result['score']:.2f})"
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
return f"Error: {str(e)}"
|
101 |
+
|
102 |
+
def create_interface():
|
103 |
+
with gr.Blocks(title="Hugging Face Models Demo") as demo:
|
104 |
+
gr.Markdown("# Hugging Face Models Chat Interface")
|
105 |
+
|
106 |
+
with gr.Accordion("Hugging Face Login", open=False):
|
107 |
+
with gr.Row():
|
108 |
+
hf_token = gr.Textbox(label="Enter Hugging Face Token", type="password")
|
109 |
+
login_btn = gr.Button("Login")
|
110 |
+
login_output = gr.Textbox(label="Login Status")
|
111 |
+
login_btn.click(hf_login, inputs=[hf_token], outputs=[login_output])
|
112 |
+
|
113 |
+
chat_interface = gr.ChatInterface(
|
114 |
+
respond,
|
115 |
+
additional_inputs=[
|
116 |
+
gr.Textbox(value="You are a helpful assistant.", label="System message"),
|
117 |
+
gr.Dropdown(
|
118 |
+
["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2",
|
119 |
+
"German GPT-2", "German Wechsel GPT-2",
|
120 |
+
"T5 Base", "T5 Large",
|
121 |
+
"Text Classification", "Sentiment Analysis"],
|
122 |
+
value="GPT-2 Original",
|
123 |
+
label="Select Model"
|
124 |
+
),
|
125 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
126 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
127 |
+
gr.Slider(
|
128 |
+
minimum=0.1,
|
129 |
+
maximum=1.0,
|
130 |
+
value=0.95,
|
131 |
+
step=0.05,
|
132 |
+
label="Top-p (nucleus sampling)",
|
133 |
+
),
|
134 |
+
]
|
135 |
+
)
|
136 |
+
|
137 |
+
return demo
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
interface = create_interface()
|
141 |
+
interface.launch(share=True)
|