import gradio as gr from transformers import pipeline import os from huggingface_hub import login # Hugging Face login function def hf_login(token): if token: try: login(token) return "Successfully logged in to Hugging Face Hub" except Exception as e: return f"Login error: {str(e)}" return "No token provided" # Define all pipelines with lazy loading def get_pipeline(model_name): """Lazy load pipeline only when needed""" try: if model_name == "GPT-2 Original": return pipeline("text-generation", model="gpt2") elif model_name == "GPT-2 Medium": return pipeline("text-generation", model="gpt2-medium") elif model_name == "DistilGPT-2": return pipeline("text-generation", model="distilgpt2") elif model_name == "German GPT-2": return pipeline("text-generation", model="german-nlp-group/german-gpt2") elif model_name == "German Wechsel GPT-2": return pipeline("text-generation", model="benjamin/gpt2-wechsel-german") elif model_name == "T5 Base": return pipeline("text2text-generation", model="t5-base") elif model_name == "T5 Large": return pipeline("text2text-generation", model="t5-large") elif model_name == "Text Classification": return pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english") elif model_name == "Sentiment Analysis": return pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment") else: raise ValueError(f"Unknown model: {model_name}") except Exception as e: raise Exception(f"Error loading model {model_name}: {str(e)}") def respond( message, history: list[tuple[str, str]], system_message, model_name, max_tokens, temperature, top_p, ): try: # Get the appropriate pipeline pipe = get_pipeline(model_name) # For text generation models if model_name in ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2", "German GPT-2", "German Wechsel GPT-2"]: # Prepare full prompt full_history = ' '.join([f"User: {msg[0]}\nAssistant: {msg[1] or ''}" for msg in history]) if history else '' full_prompt = f"{system_message}\n{full_history}\nUser: {message}\nAssistant:" response = pipe( full_prompt, max_length=len(full_prompt.split()) + max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1 )[0]['generated_text'] # Extract just the new assistant response assistant_response = response[len(full_prompt):].strip() return assistant_response # For T5 models elif model_name in ["T5 Base", "T5 Large"]: # T5 doesn't handle chat history the same way, so simplify input_text = f"{message}" response = pipe( input_text, max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1 )[0]['generated_text'] return response # For classification and sentiment models elif model_name == "Text Classification": result = pipe(message)[0] return f"Classification: {result['label']} (Confidence: {result['score']:.2f})" elif model_name == "Sentiment Analysis": result = pipe(message)[0] return f"Sentiment: {result['label']} (Confidence: {result['score']:.2f})" except Exception as e: return f"Error: {str(e)}" def create_interface(): with gr.Blocks(title="Hugging Face Models Demo") as demo: gr.Markdown("# Hugging Face Models Chat Interface") with gr.Accordion("Hugging Face Login", open=False): with gr.Row(): hf_token = gr.Textbox(label="Enter Hugging Face Token", type="password") login_btn = gr.Button("Login") login_output = gr.Textbox(label="Login Status") login_btn.click(hf_login, inputs=[hf_token], outputs=[login_output]) chat_interface = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Dropdown( ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2", "German GPT-2", "German Wechsel GPT-2", "T5 Base", "T5 Large", "Text Classification", "Sentiment Analysis"], value="GPT-2 Original", label="Select Model" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ] ) return demo if __name__ == "__main__": interface = create_interface() interface.launch(share=True)