File size: 4,352 Bytes
8f3793b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f35108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3793b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f35108
8f3793b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f35108
8f3793b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f35108
8f3793b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import random
import numpy as np
import torch
import gradio as gr
from diffusers import StableDiffusionPipeline
import paramiko
from huggingface_hub import login

# Hugging Face Token
HF_TOKEN = os.getenv('HF_TOKEN', '').strip()
if not HF_TOKEN:
    raise ValueError("HUGGING_TOKEN is not set. Please set the token as an environment variable.")

# Hugging Face Login
login(token=HF_TOKEN)

# Konfiguration
STORAGE_DOMAIN = os.getenv('STORAGE_DOMAIN', '').strip()  # SFTP Server Domain
STORAGE_USER = os.getenv('STORAGE_USER', '').strip()  # SFTP User
STORAGE_PSWD = os.getenv('STORAGE_PSWD', '').strip()  # SFTP Passwort
STORAGE_PORT = int(os.getenv('STORAGE_PORT', '22').strip())  # SFTP Port
STORAGE_SECRET = os.getenv('STORAGE_SECRET', '').strip()  # Secret Token

# Modell-Konfiguration und Device-Setup
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# Stelle fest, ob auf CPU oder GPU-System
is_gpu_available = torch.cuda.is_available()

# Modell laden - passend zur Hardware
repo = "stabilityai/stable-diffusion-3-medium-diffusers"

# Die Standard-Präzision basiert auf verfügbarer Hardware
DEFAULT_PRECISION = "float16" if is_gpu_available else "float32"
print(f"Default precision: {DEFAULT_PRECISION}")

# Modell beim Start laden
try:
    # Wähle Präzision basierend auf Hardware
    if DEFAULT_PRECISION == "float16":
        pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
    else:  # float32 für CPU
        pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float32).to(device)
    
    print("Model loaded successfully")
except Exception as e:
    raise RuntimeError(f"Failed to load the model. Ensure the token has access to the repo. Error: {e}")

# Maximalwerte
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344

# SFTP-Funktion
def upload_to_sftp(local_file, remote_path):
    try:
        transport = paramiko.Transport((STORAGE_DOMAIN, STORAGE_PORT))
        transport.connect(username=STORAGE_USER, password=STORAGE_PSWD)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(local_file, remote_path)
        sftp.close()
        transport.close()
        print(f"File {local_file} successfully uploaded to {remote_path}")
        return True
    except Exception as e:
        print(f"Error during SFTP upload: {e}")
        return False

# Inferenz-Funktion
def infer(prompt, width, height, guidance_scale, num_inference_steps, seed, randomize_seed):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.manual_seed(seed)
    image = pipe(
        prompt, 
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height, 
        generator=generator
    ).images[0]
    
    # Speichere Bild lokal
    local_file = f"/tmp/generated_image_{seed}.png"
    image.save(local_file)
    
    # Hochladen zu SFTP
    remote_path = f"/uploads/generated_image_{seed}.png"
    if upload_to_sftp(local_file, remote_path):
        os.remove(local_file)
        return f"Image uploaded to {remote_path}", seed
    else:
        return "Failed to upload image", seed

# Gradio-App
with gr.Blocks() as demo:
    gr.Markdown(f"### Stable Diffusion 3 - Test App (Running on {device.upper()} with {DEFAULT_PRECISION})")
    
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here")
            width = gr.Slider(256, MAX_IMAGE_SIZE, step=64, value=512, label="Width")
            height = gr.Slider(256, MAX_IMAGE_SIZE, step=64, value=512, label="Height")
            guidance_scale = gr.Slider(0.0, 10.0, step=0.1, value=7.5, label="Guidance Scale")
            num_inference_steps = gr.Slider(1, 50, step=1, value=25, label="Inference Steps")
            seed = gr.Number(value=42, label="Seed")
            randomize_seed = gr.Checkbox(value=False, label="Randomize Seed")
            generate_button = gr.Button("Generate Image")
            output = gr.Text(label="Output")
    
    generate_button.click(
        infer,
        inputs=[
            prompt, width, height, guidance_scale, 
            num_inference_steps, seed, randomize_seed
        ],
        outputs=[output, seed]
    )

demo.launch()