Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
from diffusers import StableDiffusionPipeline
|
7 |
+
import paramiko
|
8 |
+
from huggingface_hub import login
|
9 |
+
|
10 |
+
# Hugging Face Token
|
11 |
+
HF_TOKEN = os.getenv('HF_TOKEN', '').strip()
|
12 |
+
if not HF_TOKEN:
|
13 |
+
raise ValueError("HUGGING_TOKEN is not set. Please set the token as an environment variable.")
|
14 |
+
|
15 |
+
# Hugging Face Login
|
16 |
+
login(token=HF_TOKEN)
|
17 |
+
|
18 |
+
# Konfiguration
|
19 |
+
STORAGE_DOMAIN = os.getenv('STORAGE_DOMAIN', '').strip() # SFTP Server Domain
|
20 |
+
STORAGE_USER = os.getenv('STORAGE_USER', '').strip() # SFTP User
|
21 |
+
STORAGE_PSWD = os.getenv('STORAGE_PSWD', '').strip() # SFTP Passwort
|
22 |
+
STORAGE_PORT = int(os.getenv('STORAGE_PORT', '22').strip()) # SFTP Port
|
23 |
+
STORAGE_SECRET = os.getenv('STORAGE_SECRET', '').strip() # Secret Token
|
24 |
+
|
25 |
+
# Modell-Optionen - können angepasst werden
|
26 |
+
MODEL_REPO = os.getenv('MODEL_REPO', 'stabilityai/stable-diffusion-2-1-base') # Standard-Modell
|
27 |
+
TORCH_DTYPE = os.getenv('TORCH_DTYPE', 'float16') # Standard-Präzision
|
28 |
+
|
29 |
+
# Modell laden
|
30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
torch_dtype = torch.float16 if TORCH_DTYPE == 'float16' else torch.float32
|
32 |
+
|
33 |
+
try:
|
34 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
35 |
+
MODEL_REPO,
|
36 |
+
torch_dtype=torch_dtype
|
37 |
+
).to(device)
|
38 |
+
except Exception as e:
|
39 |
+
raise RuntimeError(f"Failed to load the model. Ensure the token has access to the repo. Error: {e}")
|
40 |
+
|
41 |
+
# Maximalwerte
|
42 |
+
MAX_SEED = np.iinfo(np.int32).max
|
43 |
+
MAX_IMAGE_SIZE = 1344
|
44 |
+
|
45 |
+
# SFTP-Funktion
|
46 |
+
def upload_to_sftp(local_file, remote_path):
|
47 |
+
"""Versucht, eine Datei auf einen SFTP-Server hochzuladen."""
|
48 |
+
try:
|
49 |
+
transport = paramiko.Transport((STORAGE_DOMAIN, STORAGE_PORT))
|
50 |
+
transport.connect(username=STORAGE_USER, password=STORAGE_PSWD)
|
51 |
+
sftp = paramiko.SFTPClient.from_transport(transport)
|
52 |
+
sftp.put(local_file, remote_path)
|
53 |
+
sftp.close()
|
54 |
+
transport.close()
|
55 |
+
return True
|
56 |
+
except Exception as e:
|
57 |
+
return f"Error during SFTP upload: {e}"
|
58 |
+
|
59 |
+
# Inferenz-Funktion
|
60 |
+
def infer(prompt, width, height, guidance_scale, num_inference_steps, seed, randomize_seed):
|
61 |
+
"""Generiert ein Bild basierend auf dem Eingabe-Prompt und lädt es auf einen SFTP-Server hoch."""
|
62 |
+
if randomize_seed:
|
63 |
+
seed = random.randint(0, MAX_SEED)
|
64 |
+
|
65 |
+
generator = torch.manual_seed(seed)
|
66 |
+
image = pipe(
|
67 |
+
prompt,
|
68 |
+
guidance_scale=guidance_scale,
|
69 |
+
num_inference_steps=num_inference_steps,
|
70 |
+
width=width,
|
71 |
+
height=height,
|
72 |
+
generator=generator
|
73 |
+
).images[0]
|
74 |
+
|
75 |
+
# Speichere Bild lokal
|
76 |
+
local_file = f"/tmp/generated_image_{seed}.png"
|
77 |
+
image.save(local_file)
|
78 |
+
|
79 |
+
# Hochladen zu SFTP
|
80 |
+
remote_path = f"/uploads/generated_image_{seed}.png"
|
81 |
+
upload_result = upload_to_sftp(local_file, remote_path)
|
82 |
+
|
83 |
+
# Entferne das lokale Bild, wenn der Upload erfolgreich war
|
84 |
+
if upload_result == True:
|
85 |
+
os.remove(local_file)
|
86 |
+
return f"Image successfully uploaded to {remote_path}", seed
|
87 |
+
else:
|
88 |
+
return upload_result, seed
|
89 |
+
|
90 |
+
# App-Titel mit Modell- und Präzisionsinformationen
|
91 |
+
APP_TITLE = f"### Stable Diffusion - {os.path.basename(MODEL_REPO)} ({TORCH_DTYPE} auf {device})"
|
92 |
+
|
93 |
+
# Gradio-App
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown(APP_TITLE)
|
96 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here")
|
97 |
+
width = gr.Slider(256, MAX_IMAGE_SIZE, step=64, value=512, label="Width")
|
98 |
+
height = gr.Slider(256, MAX_IMAGE_SIZE, step=64, value=512, label="Height")
|
99 |
+
guidance_scale = gr.Slider(0.0, 10.0, step=0.1, value=7.5, label="Guidance Scale")
|
100 |
+
num_inference_steps = gr.Slider(1, 50, step=1, value=25, label="Inference Steps")
|
101 |
+
seed = gr.Number(value=42, label="Seed")
|
102 |
+
randomize_seed = gr.Checkbox(value=False, label="Randomize Seed")
|
103 |
+
generate_button = gr.Button("Generate Image")
|
104 |
+
output = gr.Text(label="Output")
|
105 |
+
|
106 |
+
# Klick-Event für die Generierung
|
107 |
+
generate_button.click(
|
108 |
+
infer,
|
109 |
+
inputs=[prompt, width, height, guidance_scale, num_inference_steps, seed, randomize_seed],
|
110 |
+
outputs=[output, seed]
|
111 |
+
)
|
112 |
+
|
113 |
+
demo.launch()
|