Spaces:
Runtime error
Runtime error
File size: 7,676 Bytes
a77b059 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# =============================================================================
# DON'T STEAL THE FREE CODE OF DEVS! Use it for free an do not touch credits!
# If you steal this code, in the future you will pay for apps like this!
# A bit of respect goes a long way – all rights reserved under German law.
# Copyright Volkan Kücükbudak https://github.com/volkansah
# Repo URL: https://github.com/AiCodeCraft
# =============================================================================
import streamlit as st
import os
import json
import datetime
import openai
from datetime import timedelta
import logging
from datasets import load_dataset, Dataset, concatenate_datasets
import sys
import schedule
import threading
import time
print("Python Version:", sys.version)
print("Importiere Module...")
# ------------------ Logging konfigurieren ------------------
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# ------------------ Initialisierung ------------------
# Als globale Variable definieren
HF_TOKEN_MEMORY = ""
def main():
global HF_TOKEN_MEMORY # Als global markieren
logger.info("App-Initialisierung gestartet...")
# ------------------ Hugging Face Token ------------------
HF_TOKEN_MEMORY = os.getenv("HF_TOKEN_MEMORY", "")
if not HF_TOKEN_MEMORY:
try:
HF_TOKEN_MEMORY = st.secrets["HF_TOKEN_MEMORY"]
logger.info("Token aus Streamlit Secrets geladen")
except Exception as e:
logger.warning(f"Token nicht in Streamlit Secrets gefunden: {str(e)}")
if HF_TOKEN_MEMORY:
token_preview = HF_TOKEN_MEMORY[:4] + "..." if len(HF_TOKEN_MEMORY) > 4 else "Ungültig"
logger.info(f"HF Token gefunden. Startet mit: {token_preview}")
else:
logger.warning("Kein HF Token gefunden! Dataset-Funktionen werden nicht verfügbar sein.")
# ------------------ Streamlit UI ------------------
st.title("AI Customer Support Agent with Memory 🛒")
st.caption("Chat with an assistant who remembers past interactions")
# OpenAI Key Eingabe
openai_api_key = st.text_input("Enter OpenAI API Key", type="password", key="openai_key")
if not openai_api_key:
logger.warning("API-Key benötigt")
st.stop()
openai.api_key = openai_api_key
# ------------------ Dataset Funktionen ------------------
DATASET_REPO = "AiCodeCraft/customer_memory" # Repository existiert bereits
@st.cache_resource
def load_memory_dataset():
"""
Versucht, das Memory-Dataset vom HF Hub zu laden.
Falls nicht vorhanden, wird ein leeres Dataset erstellt und gepusht.
"""
if not HF_TOKEN_MEMORY:
logger.warning("Kein HF Token vorhanden, verwende lokales Dataset")
return Dataset.from_dict({"user_id": [], "query": [], "response": [], "timestamp": []})
try:
logger.info(f"Versuche Dataset {DATASET_REPO} zu laden...")
ds = load_dataset(DATASET_REPO, split="train", token=HF_TOKEN_MEMORY)
logger.info(f"Dataset erfolgreich geladen mit {len(ds)} Einträgen.")
return ds
except Exception as e:
logger.warning(f"Fehler beim Laden des Datasets: {str(e)}")
logger.info("Erstelle neues Dataset...")
data = {"user_id": [], "query": [], "response": [], "timestamp": []}
ds = Dataset.from_dict(data)
try:
ds.push_to_hub(DATASET_REPO, token=HF_TOKEN_MEMORY)
logger.info("Neues Dataset erfolgreich erstellt und gepusht.")
except Exception as push_error:
logger.error(f"Fehler beim Pushen des Datasets: {str(push_error)}")
return ds
# ------------------ AI Agent Klasse ------------------
class CustomerSupportAIAgent:
def __init__(self):
self.memory = load_memory_dataset()
self.schedule_push()
def schedule_push(self):
# Diese Funktion pusht das Dataset periodisch im Hintergrund
def push_memory():
if HF_TOKEN_MEMORY:
try:
self.memory.push_to_hub(DATASET_REPO, token=HF_TOKEN_MEMORY)
logger.info("Memory erfolgreich aktualisiert (periodischer Push)")
except Exception as e:
logger.error(f"Fehler beim periodischen Aktualisieren des Datasets: {str(e)}")
schedule.every(10).minutes.do(push_memory)
threading.Thread(target=self.run_schedule, daemon=True).start()
def run_schedule(self):
while True:
schedule.run_pending()
time.sleep(1)
def handle_query(self, query, user_id):
# Memory abrufen
user_history = self.memory.filter(lambda x: x["user_id"] == user_id)
context = "Previous interactions:\n" + "\n".join(
[f"Q: {h['query']}\nA: {h['response']}" for h in user_history]
) if len(user_history) > 0 else "No previous interactions"
# API-Anfrage
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": f"You are a support agent. Context:\n{context}"},
{"role": "user", "content": query}
]
)
answer = response.choices[0].message.content
except Exception as e:
logger.error(f"Fehler bei OpenAI-API-Anfrage: {str(e)}")
answer = "Entschuldigung, ein Fehler ist aufgetreten."
# Memory aktualisieren mit Timestamp
current_time = datetime.datetime.now().isoformat()
new_entry = Dataset.from_dict({
"user_id": [user_id],
"query": [query],
"response": [answer],
"timestamp": [current_time]
})
self.memory = concatenate_datasets([self.memory, new_entry])
logger.info(f"Memory lokal aktualisiert für User {user_id}")
# Der Push erfolgt periodisch im Hintergrund
return answer
# ------------------ App-Logik ------------------
support_agent = CustomerSupportAIAgent()
# Customer ID Handling
customer_id = st.sidebar.text_input("Customer ID", key="cust_id")
if not customer_id:
logger.warning("Keine Customer ID eingegeben")
st.stop()
# Chat-History initialisieren
if "messages" not in st.session_state:
st.session_state.messages = []
# Zeige nur die letzten 20 Nachrichten an
max_messages = 20
displayed_messages = st.session_state.messages[-max_messages:]
for msg in displayed_messages:
st.chat_message(msg["role"]).write(msg["content"])
# Eingabe verarbeiten
if prompt := st.chat_input("Your question"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
with st.spinner("Denke nach..."):
response = support_agent.handle_query(prompt, customer_id)
st.session_state.messages.append({"role": "assistant", "content": response})
st.chat_message("assistant").write(response)
# ------------------ Hauptausführung ------------------
if __name__ == "__main__":
try:
main()
except Exception as e:
logger.error(f"Startup-Fehler: {str(e)}", exc_info=True)
|