Alibrown commited on
Commit
ea69cd5
·
verified ·
1 Parent(s): 0a24501

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +147 -0
app.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import json
4
+ import datetime
5
+ import openai
6
+ from datasets import load_dataset, Dataset, concatenate_datasets
7
+ from huggingface_hub import login
8
+
9
+ # -- Einstellungen für Hugging Face Dataset Repository --
10
+ # Ersetze "your_username/customer_memory" durch deinen eigenen Repository-Namen!
11
+ DATASET_REPO = "your_username/customer_memory"
12
+
13
+ # Hugging Face Login
14
+ hf_token = st.sidebar.text_input("Enter your Hugging Face Token", type="password")
15
+ if hf_token:
16
+ login(token=hf_token)
17
+ st.sidebar.success("Logged in to Hugging Face!")
18
+
19
+ # Hilfsfunktion: Versuche, das Dataset vom HF Hub zu laden; falls nicht vorhanden, initialisiere es
20
+ def load_memory_dataset():
21
+ try:
22
+ ds = load_dataset(DATASET_REPO, split="train")
23
+ st.write("Dataset loaded from HF Hub.")
24
+ except Exception as e:
25
+ st.write("Dataset not found on HF Hub. Creating a new one...")
26
+ # Leeres Dataset mit den Spalten: user_id, query, response
27
+ data = {"user_id": [], "query": [], "response": []}
28
+ ds = Dataset.from_dict(data)
29
+ ds.push_to_hub(DATASET_REPO)
30
+ st.write("New dataset created and pushed to HF Hub.")
31
+ return ds
32
+
33
+ # Hilfsfunktion: Füge einen neuen Eintrag (Memory) hinzu und pushe das aktualisierte Dataset
34
+ def add_to_memory(user_id, query, response):
35
+ ds = load_memory_dataset()
36
+ # Neuer Eintrag als kleines Dataset
37
+ new_entry = Dataset.from_dict({
38
+ "user_id": [user_id],
39
+ "query": [query],
40
+ "response": [response]
41
+ })
42
+ # Bestehendes Dataset mit dem neuen Eintrag zusammenführen
43
+ updated_ds = concatenate_datasets([ds, new_entry])
44
+ # Aktualisiere das Dataset auf HF Hub
45
+ updated_ds.push_to_hub(DATASET_REPO)
46
+ st.write("Memory updated.")
47
+
48
+ # Hilfsfunktion: Filtere das Dataset nach einer bestimmten customer_id
49
+ def get_memory(user_id):
50
+ ds = load_memory_dataset()
51
+ return ds.filter(lambda x: x["user_id"] == user_id)
52
+
53
+ # OpenAI GPT-4 API-Anbindung
54
+ def generate_response(prompt):
55
+ response = openai.ChatCompletion.create(
56
+ model="gpt-4",
57
+ messages=[
58
+ {"role": "system", "content": "You are a customer support AI for TechGadgets.com."},
59
+ {"role": "user", "content": prompt}
60
+ ]
61
+ )
62
+ return response.choices[0].message.content
63
+
64
+ # Streamlit App UI
65
+ st.title("AI Customer Support Agent with Memory 🛒")
66
+ st.caption("Chat with a customer support assistant who remembers your past interactions.")
67
+
68
+ # OpenAI API Key Eingabe
69
+ openai_api_key = st.text_input("Enter OpenAI API Key", type="password")
70
+ if openai_api_key:
71
+ os.environ["OPENAI_API_KEY"] = openai_api_key
72
+ openai.api_key = openai_api_key
73
+
74
+ # Sidebar: Customer ID und Optionen
75
+ st.sidebar.title("Enter your Customer ID:")
76
+ customer_id = st.sidebar.text_input("Customer ID")
77
+
78
+ # Optional: Synthetic Data generieren (Beispiel-Daten)
79
+ if st.sidebar.button("Generate Synthetic Data"):
80
+ if customer_id:
81
+ synthetic_data = {
82
+ "name": "Max Mustermann",
83
+ "recent_order": {
84
+ "product": "High-end Smartphone",
85
+ "order_date": (datetime.datetime.now() - datetime.timedelta(days=10)).strftime("%B %d, %Y"),
86
+ "delivery_date": (datetime.datetime.now() + datetime.timedelta(days=2)).strftime("%B %d, %Y"),
87
+ "order_number": "ORD123456"
88
+ },
89
+ "previous_orders": [
90
+ {"product": "Laptop", "order_date": "January 12, 2025"},
91
+ {"product": "Tablet", "order_date": "March 01, 2025"}
92
+ ],
93
+ "customer_service_interactions": [
94
+ "Asked about order status",
95
+ "Inquired about warranty"
96
+ ]
97
+ }
98
+ st.session_state.customer_data = synthetic_data
99
+ st.sidebar.success("Synthetic data generated!")
100
+ else:
101
+ st.sidebar.error("Please enter a customer ID first.")
102
+
103
+ if st.sidebar.button("View Customer Profile"):
104
+ if "customer_data" in st.session_state and st.session_state.customer_data:
105
+ st.sidebar.json(st.session_state.customer_data)
106
+ else:
107
+ st.sidebar.info("No synthetic data available.")
108
+
109
+ if st.sidebar.button("View Memory Info"):
110
+ if customer_id:
111
+ memories = get_memory(customer_id)
112
+ st.sidebar.write(f"Memory for customer **{customer_id}**:")
113
+ for mem in memories:
114
+ st.sidebar.write(f"**Query:** {mem['query']}\n**Response:** {mem['response']}\n---")
115
+ else:
116
+ st.sidebar.error("Please enter a customer ID.")
117
+
118
+ # Initialisiere Chatverlauf in session_state
119
+ if "messages" not in st.session_state:
120
+ st.session_state.messages = []
121
+
122
+ # Zeige bisherigen Chatverlauf
123
+ for message in st.session_state.messages:
124
+ st.chat_message(message["role"]).markdown(message["content"])
125
+
126
+ # Haupt-Chat: Benutzer-Eingabe
127
+ query = st.chat_input("How can I assist you today?")
128
+ if query and customer_id:
129
+ # Hole bisherigen Memory-Context
130
+ memories = get_memory(customer_id)
131
+ context = ""
132
+ for mem in memories:
133
+ context += f"Query: {mem['query']}\nResponse: {mem['response']}\n"
134
+ # Kombiniere Kontext mit aktueller Anfrage
135
+ full_prompt = context + f"\nCustomer: {query}\nSupport Agent:"
136
+ with st.spinner("Generating response..."):
137
+ answer = generate_response(full_prompt)
138
+ # Aktualisiere den Chatverlauf
139
+ st.session_state.messages.append({"role": "user", "content": query})
140
+ st.session_state.messages.append({"role": "assistant", "content": answer})
141
+ st.chat_message("assistant").markdown(answer)
142
+ # Speicher die Interaktion in der Memory (Dataset)
143
+ add_to_memory(customer_id, query, answer)
144
+ elif query and not customer_id:
145
+ st.error("Please enter a customer ID to start the chat.")
146
+ else:
147
+ st.warning("Please enter your OpenAI API key to use the customer support agent.")