Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load GPT-2 XL model
|
6 |
+
model_name = "gpt2-xl"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Create generator pipeline
|
11 |
+
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
12 |
+
|
13 |
+
def generate_data(prompt, amount):
|
14 |
+
responses = []
|
15 |
+
for _ in range(amount):
|
16 |
+
output = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
|
17 |
+
responses.append(output.strip())
|
18 |
+
return responses
|
19 |
+
|
20 |
+
with gr.Blocks() as demo:
|
21 |
+
gr.Markdown("### GPT-2 XL Data Generator\nDescribe the data you'd like the AI to generate.")
|
22 |
+
prompt_input = gr.Textbox(label="Prompt / Data Type", placeholder="Describe the data you want")
|
23 |
+
amount_input = gr.Slider(1, 10, value=3, step=1, label="Number of Data Items")
|
24 |
+
output_box = gr.Textbox(label="Generated Data", lines=15)
|
25 |
+
|
26 |
+
generate_btn = gr.Button("Generate")
|
27 |
+
generate_btn.click(generate_data, inputs=[prompt_input, amount_input], outputs=output_box)
|
28 |
+
|
29 |
+
demo.launch()
|