Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,23 +2,31 @@ import torch
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
import gradio as gr
|
4 |
|
5 |
-
# Load GPT-2
|
6 |
-
model_name = "gpt2
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
-
# Create generator pipeline
|
11 |
-
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
12 |
|
13 |
def generate_data(prompt, amount):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
with gr.Blocks() as demo:
|
21 |
-
gr.Markdown("###
|
22 |
prompt_input = gr.Textbox(label="Prompt / Data Type", placeholder="Describe the data you want")
|
23 |
amount_input = gr.Slider(1, 10, value=3, step=1, label="Number of Data Items")
|
24 |
output_box = gr.Textbox(label="Generated Data", lines=15)
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Load smaller GPT-2 model
|
6 |
+
model_name = "gpt2" # smaller and faster
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
+
# Create generator pipeline for CPU
|
11 |
+
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=-1)
|
12 |
|
13 |
def generate_data(prompt, amount):
|
14 |
+
# Generate multiple samples in batch
|
15 |
+
responses = generator(
|
16 |
+
prompt,
|
17 |
+
max_length=50, # keep short for speed
|
18 |
+
num_return_sequences=amount,
|
19 |
+
do_sample=False, # greedy for speed
|
20 |
+
temperature=0.7,
|
21 |
+
top_k=50,
|
22 |
+
top_p=0.95,
|
23 |
+
pad_token_id=tokenizer.eos_token_id,
|
24 |
+
num_beams=1 # greedy
|
25 |
+
)
|
26 |
+
return [resp['generated_text'].strip() for resp in responses]
|
27 |
|
28 |
with gr.Blocks() as demo:
|
29 |
+
gr.Markdown("### Faster Data Generator with GPT-2\nDescribe what data you want to generate.")
|
30 |
prompt_input = gr.Textbox(label="Prompt / Data Type", placeholder="Describe the data you want")
|
31 |
amount_input = gr.Slider(1, 10, value=3, step=1, label="Number of Data Items")
|
32 |
output_box = gr.Textbox(label="Generated Data", lines=15)
|