Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,34 @@
|
|
1 |
-
import
|
|
|
2 |
from datasets import load_dataset
|
3 |
-
import pandas as pd
|
4 |
-
import torch
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
dataset = load_dataset("HuggingFaceFW/fineweb", split="train")
|
12 |
-
print("Saving dataset to data.csv...")
|
13 |
-
dataset.to_csv("data.csv")
|
14 |
-
print("Done! Data saved to data.csv.")
|
15 |
-
return "Dataset loaded and saved to data.csv."
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
24 |
-
|
25 |
-
# Create generator pipeline
|
26 |
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=-1)
|
27 |
|
28 |
-
# Function to generate responses
|
29 |
def generate_response(prompt):
|
30 |
responses = generator(
|
31 |
prompt,
|
@@ -38,24 +41,24 @@ def generate_response(prompt):
|
|
38 |
)
|
39 |
return responses[0]['generated_text'].strip()
|
40 |
|
41 |
-
#
|
42 |
with gr.Blocks() as demo:
|
43 |
-
gr.Markdown("##
|
44 |
-
gr.Textbox(value="Loading
|
45 |
-
fetch_button = gr.Button("Load Dataset and Save CSV")
|
46 |
-
output_message = gr.Textbox()
|
47 |
|
48 |
-
def
|
49 |
-
|
50 |
-
return msg
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
gr.Markdown("###
|
55 |
-
prompt_input = gr.Textbox(label="
|
56 |
-
response_output = gr.Textbox(label="Response", lines=10)
|
57 |
|
58 |
def respond(prompt):
|
|
|
59 |
return generate_response(prompt)
|
60 |
|
61 |
gr.Button("Ask").click(respond, inputs=prompt_input, outputs=response_output)
|
|
|
1 |
+
import threading
|
2 |
+
import time
|
3 |
from datasets import load_dataset
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
|
7 |
+
# Global variable to store dataset loading status
|
8 |
+
dataset_loaded = False
|
9 |
+
dataset_info = "Dataset not loaded yet."
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
def load_dataset_in_background():
|
12 |
+
global dataset_loaded, dataset_info
|
13 |
+
try:
|
14 |
+
dataset_info = "Loading dataset..."
|
15 |
+
dataset = load_dataset("HuggingFaceFW/fineweb", split="train")
|
16 |
+
# Save to CSV if needed
|
17 |
+
dataset.to_csv("data.csv")
|
18 |
+
dataset_info = "Dataset loaded successfully!"
|
19 |
+
dataset_loaded = True
|
20 |
+
except Exception as e:
|
21 |
+
dataset_info = f"Error loading dataset: {e}"
|
22 |
|
23 |
+
# Start dataset loading in background thread
|
24 |
+
threading.Thread(target=load_dataset_in_background, daemon=True).start()
|
25 |
+
|
26 |
+
# Load GPT-2 model for inference
|
27 |
+
model_name = "gpt2"
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
30 |
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=-1)
|
31 |
|
|
|
32 |
def generate_response(prompt):
|
33 |
responses = generator(
|
34 |
prompt,
|
|
|
41 |
)
|
42 |
return responses[0]['generated_text'].strip()
|
43 |
|
44 |
+
# Gradio Interface
|
45 |
with gr.Blocks() as demo:
|
46 |
+
gr.Markdown("## AI Assistant with Background Dataset Loading")
|
47 |
+
dataset_status = gr.Textbox(value=dataset_info, label="Dataset Loading Status", interactive=False, lines=2)
|
|
|
|
|
48 |
|
49 |
+
def get_dataset_status():
|
50 |
+
return dataset_info
|
|
|
51 |
|
52 |
+
# Refresh status button (or auto-update)
|
53 |
+
refresh_btn = gr.Button("Check Dataset Status")
|
54 |
+
refresh_btn.click(get_dataset_status, outputs=dataset_status)
|
55 |
|
56 |
+
gr.Markdown("### Chat with the AI")
|
57 |
+
prompt_input = gr.Textbox(label="Your prompt", placeholder="Ask me anything...")
|
58 |
+
response_output = gr.Textbox(label="AI Response", lines=10)
|
59 |
|
60 |
def respond(prompt):
|
61 |
+
# You can implement logic to use dataset info here if needed
|
62 |
return generate_response(prompt)
|
63 |
|
64 |
gr.Button("Ask").click(respond, inputs=prompt_input, outputs=response_output)
|