AiDeveloper1 commited on
Commit
457c97d
·
verified ·
1 Parent(s): 0032972

Upload 5 files

Browse files
Files changed (5) hide show
  1. Dockerfile +22 -0
  2. app.py +102 -0
  3. chatbot.py +195 -0
  4. requirements.txt +18 -0
  5. templates/index.html +252 -0
Dockerfile ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use the official Python base image
2
+ FROM python:3.11-slim
3
+
4
+ # Set environment variables
5
+ ENV PYTHONDONTWRITEBYTECODE=1
6
+ ENV PYTHONUNBUFFERED=1
7
+
8
+ # Set work directory
9
+ WORKDIR /app
10
+
11
+ # Install dependencies
12
+ COPY requirements.txt .
13
+ RUN pip install --no-cache-dir -r requirements.txt
14
+
15
+ # Copy project files
16
+ COPY . .
17
+
18
+ # Expose the port Flask runs on
19
+ EXPOSE 5000
20
+
21
+ # Run the app
22
+ CMD ["python", "app.py"]
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request, jsonify
2
+ from googletrans import Translator
3
+ import io
4
+ import asyncio
5
+ from dotenv import load_dotenv
6
+ import os
7
+ import logging
8
+ from chatbot import process_uploaded_file, index_documents, rag_chatbot
9
+
10
+ # Set up logging
11
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
12
+ logger = logging.getLogger(__name__)
13
+
14
+ # Load environment variables
15
+ load_dotenv()
16
+ app = Flask(__name__)
17
+
18
+ LANGUAGE_MAP = {
19
+ "English (US)": "en",
20
+ "Hindi (India)": "hi",
21
+ "Spanish (Spain)": "es",
22
+ "French (France)": "fr",
23
+ "German (Germany)": "de",
24
+ "Arabic (Saudi Arabia)": "ar"
25
+ }
26
+
27
+ @app.route('/')
28
+ def index():
29
+ return render_template("index.html")
30
+
31
+ @app.route('/api/upload_document', methods=['POST'])
32
+ def upload_document():
33
+ try:
34
+ if 'file' not in request.files:
35
+ return jsonify({"error": "No file uploaded"}), 400
36
+
37
+ file = request.files['file']
38
+ if file.filename == '':
39
+ return jsonify({"error": "No file selected"}), 400
40
+
41
+ # Process file without saving locally
42
+ file_stream = io.BytesIO(file.read())
43
+ documents = process_uploaded_file(file_stream, file.filename)
44
+
45
+ # Index documents in Pinecone
46
+ vector_store = index_documents(documents)
47
+
48
+ return jsonify({"message": f"Successfully processed and indexed {len(documents)} chunks from {file.filename}"})
49
+
50
+ except Exception as e:
51
+ logger.error(f"Error in upload_document: {str(e)}")
52
+ return jsonify({"error": str(e)}), 500
53
+
54
+ @app.route('/api/process_text', methods=['POST'])
55
+ def process_text():
56
+ # Get JSON payload
57
+ data = request.get_json()
58
+ try:
59
+ original_text = data['text']
60
+ language_name = data['language']
61
+ except (KeyError, TypeError):
62
+ return jsonify({"error": "Missing 'text' or 'language' in JSON payload"}), 400
63
+
64
+ # Map language name to language code
65
+ if language_name not in LANGUAGE_MAP:
66
+ return jsonify({"error": f"Unsupported language: {language_name}"}), 400
67
+ original_lang_code = LANGUAGE_MAP[language_name]
68
+
69
+ logger.info(f"Original Text: {original_text}")
70
+ logger.info(f"Original Language: {language_name} ({original_lang_code})")
71
+
72
+ # Define an async function for translation
73
+ async def translate_async(text, dest_lang):
74
+ translator = Translator()
75
+ translated = translator.translate(text, dest=dest_lang)
76
+ return translated.text
77
+
78
+ # Translate to English
79
+ if original_lang_code != "en":
80
+ translated_text = asyncio.run(translate_async(original_text, dest_lang="en"))
81
+ else:
82
+ translated_text = original_text
83
+
84
+ logger.info(f"Translated to English: {translated_text}")
85
+
86
+ # Process with RAG
87
+ response = rag_chatbot(translated_text)
88
+ logger.info(f"English Response: {response}")
89
+
90
+ # Translate response back to original language
91
+ if original_lang_code != "en":
92
+ final_response = asyncio.run(translate_async(response, dest_lang=original_lang_code))
93
+ else:
94
+ final_response = response
95
+
96
+ logger.info(f"Final Response (in original language): {final_response}")
97
+
98
+ # Return the final response
99
+ return jsonify({"response": final_response, "language": language_name})
100
+
101
+ if __name__ == '__main__':
102
+ app.run(host='0.0.0.0', port=5000)
chatbot.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import google.generativeai as genai
2
+ from pinecone import Pinecone, ServerlessSpec
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from langchain_pinecone import PineconeVectorStore
5
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
+ from langchain_core.documents import Document
7
+ import io
8
+ import PyPDF2
9
+ import pandas as pd
10
+ import logging
11
+ import asyncio
12
+ from dotenv import load_dotenv
13
+ import os
14
+ import uuid
15
+
16
+ # Set up logging
17
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
18
+ logger = logging.getLogger(__name__)
19
+
20
+ # Load environment variables
21
+ load_dotenv()
22
+
23
+ # Configure Gemini API
24
+ GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
25
+ genai.configure(api_key=GEMINI_API_KEY)
26
+
27
+ # Initialize Pinecone
28
+ PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
29
+ pc = Pinecone(api_key=PINECONE_API_KEY)
30
+ cloud = os.environ.get('PINECONE_CLOUD', 'aws')
31
+ region = os.environ.get('PINECONE_REGION', 'us-east-1')
32
+ spec = ServerlessSpec(cloud=cloud, region=region)
33
+
34
+ # Define index name and embedding dimension
35
+ index_name = "rag-donor-index"
36
+ embedding_dimension = 768 # For text-embedding-004
37
+
38
+ # Check if index exists, create if not
39
+ if index_name not in pc.list_indexes().names():
40
+ logger.info(f"Creating Pinecone index: {index_name}")
41
+ pc.create_index(
42
+ name=index_name,
43
+ dimension=embedding_dimension,
44
+ metric="cosine",
45
+ spec=spec
46
+ )
47
+ # Wait for index to be ready
48
+ while not pc.describe_index(index_name).status['ready']:
49
+ asyncio.sleep(1)
50
+
51
+ logger.info(f"Pinecone index {index_name} is ready.")
52
+
53
+ # Initialize embeddings
54
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/text-embedding-004", google_api_key=GEMINI_API_KEY)
55
+
56
+ # Function to process uploaded file (PDF, text, CSV, or XLSX) without saving locally
57
+ def process_uploaded_file(file_stream, filename):
58
+ logger.info(f"Processing uploaded file: {filename}")
59
+ try:
60
+ if filename.lower().endswith('.pdf'):
61
+ logger.info("Processing as PDF file.")
62
+ pdf_reader = PyPDF2.PdfReader(file_stream)
63
+ text = ""
64
+ for page in pdf_reader.pages:
65
+ text += page.extract_text() or ""
66
+
67
+ # Split PDF content into chunks
68
+ text_splitter = RecursiveCharacterTextSplitter(
69
+ chunk_size=500,
70
+ chunk_overlap=100
71
+ )
72
+ chunks = text_splitter.split_text(text)
73
+ documents = [Document(page_content=chunk, metadata={"source": filename, "chunk_id": str(uuid.uuid4())}) for chunk in chunks]
74
+ logger.info(f"Extracted {len(documents)} chunks from PDF.")
75
+ return documents
76
+
77
+ elif filename.lower().endswith(('.txt', '.md')):
78
+ logger.info("Processing as text file.")
79
+ content = file_stream.read().decode('utf-8', errors='replace')
80
+ text_splitter = RecursiveCharacterTextSplitter(
81
+ chunk_size=500,
82
+ chunk_overlap=100
83
+ )
84
+ chunks = text_splitter.split_text(content)
85
+ documents = [Document(page_content=chunk, metadata={"source": filename, "chunk_id": str(uuid.uuid4())}) for chunk in chunks]
86
+ logger.info(f"Extracted {len(documents)} chunks from text file.")
87
+ return documents
88
+
89
+ elif filename.lower().endswith('.csv'):
90
+ logger.info("Processing as CSV file.")
91
+ df = pd.read_csv(file_stream)
92
+ # Convert DataFrame to string representation
93
+ text = df.to_string()
94
+ text_splitter = RecursiveCharacterTextSplitter(
95
+ chunk_size=500,
96
+ chunk_overlap=100
97
+ )
98
+ chunks = text_splitter.split_text(text)
99
+ documents = [Document(page_content=chunk, metadata={"source": filename, "chunk_id": str(uuid.uuid4())}) for chunk in chunks]
100
+ logger.info(f"Extracted {len(documents)} chunks from CSV.")
101
+ return documents
102
+
103
+ elif filename.lower().endswith('.xlsx'):
104
+ logger.info("Processing as XLSX file.")
105
+ df = pd.read_excel(file_stream, engine='openpyxl')
106
+ # Convert DataFrame to string representation
107
+ text = df.to_string()
108
+ text_splitter = RecursiveCharacterTextSplitter(
109
+ chunk_size=500,
110
+ chunk_overlap=100
111
+ )
112
+ chunks = text_splitter.split_text(text)
113
+ documents = [Document(page_content=chunk, metadata={"source": filename, "chunk_id": str(uuid.uuid4())}) for chunk in chunks]
114
+ logger.info(f"Extracted {len(documents)} chunks from XLSX.")
115
+ return documents
116
+
117
+ else:
118
+ raise ValueError("Unsupported file type. Only PDF, text, CSV, and XLSX files are supported.")
119
+
120
+ except Exception as e:
121
+ logger.error(f"Error processing file {filename}: {str(e)}")
122
+ raise Exception(f"Error processing file: {str(e)}")
123
+
124
+ # Function to index documents in Pinecone
125
+ def index_documents(documents, namespace="chatbot-knowledge", batch_size=50):
126
+ logger.info(f"Indexing {len(documents)} documents in Pinecone.")
127
+ try:
128
+ vector_store = PineconeVectorStore(
129
+ index_name=index_name,
130
+ embedding=embeddings,
131
+ namespace=namespace
132
+ )
133
+
134
+ # Batch documents to avoid Pinecone size limits
135
+ for i in range(0, len(documents), batch_size):
136
+ batch = documents[i:i + batch_size]
137
+ batch_size_bytes = sum(len(doc.page_content.encode('utf-8')) for doc in batch)
138
+ if batch_size_bytes > 4_000_000:
139
+ logger.warning(f"Batch size {batch_size_bytes} bytes exceeds Pinecone limit. Reducing batch size.")
140
+ smaller_batch_size = batch_size // 2
141
+ for j in range(0, len(batch), smaller_batch_size):
142
+ smaller_batch = batch[j:j + smaller_batch_size]
143
+ vector_store.add_documents(smaller_batch)
144
+ logger.info(f"Indexed batch {j // smaller_batch_size + 1} of {len(batch) // smaller_batch_size + 1}")
145
+ else:
146
+ vector_store.add_documents(batch)
147
+ logger.info(f"Indexed batch {i // batch_size + 1} of {len(documents) // batch_size + 1}")
148
+
149
+ logger.info("Document indexing completed.")
150
+ return vector_store
151
+
152
+ except Exception as e:
153
+ logger.error(f"Error indexing documents: {e}")
154
+ raise Exception(f"Error indexing documents: {e}")
155
+
156
+ # RAG chatbot function
157
+ def rag_chatbot(query, namespace="chatbot-knowledge"):
158
+ logger.info(f"Processing query: {query}")
159
+ try:
160
+ # Initialize vector store
161
+ vector_store = PineconeVectorStore(
162
+ index_name=index_name,
163
+ embedding=embeddings,
164
+ namespace=namespace
165
+ )
166
+
167
+ # Retrieve relevant documents
168
+ relevant_docs_with_scores = vector_store.similarity_search_with_score(query, k=3)
169
+ for doc, score in relevant_docs_with_scores:
170
+ logger.info(f"Score: {score:.4f} | Document: {doc.page_content}")
171
+
172
+ # Combine context from retrieved documents
173
+ context = "\n".join([doc.page_content for doc, score in relevant_docs_with_scores])
174
+
175
+ # Create prompt for Gemini
176
+ prompt = f"""You are a helpful chatbot that answers questions based on provided context.
177
+ Context:
178
+ {context}
179
+
180
+ User Query: {query}
181
+
182
+ Provide a concise and accurate answer based on the context. If the context doesn't contain relevant information, say so and provide a general response if applicable.
183
+ """
184
+
185
+ # Initialize Gemini model
186
+ model = genai.GenerativeModel('gemini-1.5-flash')
187
+
188
+ # Generate response
189
+ response = model.generate_content(prompt)
190
+ logger.info("Generated response successfully.")
191
+ return response.text
192
+
193
+ except Exception as e:
194
+ logger.error(f"Error processing query: {e}")
195
+ return f"Error processing query: {e}"
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ flask
2
+ #openai
3
+ python-dotenv
4
+ googletrans
5
+ google-generativeai
6
+ pinecone-client
7
+ langchain
8
+ langchain-pinecone
9
+ langchain-google-genai
10
+ charset-normalizer
11
+ PyPDF2
12
+ pdfplumber
13
+ langchain-community
14
+ flask-cors
15
+ sentence-transformers
16
+ nltk
17
+ pandas
18
+ openpyxl
templates/index.html ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8" />
5
+ <title>Voice Command</title>
6
+ <style>
7
+ body {
8
+ font-family: Arial, sans-serif;
9
+ }
10
+ .chat-container {
11
+ max-width: 400px;
12
+ margin: 20px auto;
13
+ padding: 10px;
14
+ border: 1px solid #ccc;
15
+ border-radius: 5px;
16
+ box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
17
+ }
18
+ .user-message {
19
+ background-color: #f0f0f0;
20
+ border-radius: 5px;
21
+ padding: 5px 10px;
22
+ margin: 5px 0;
23
+ text-align: right;
24
+ }
25
+ .bot-message {
26
+ background-color: #d3e9ff;
27
+ border-radius: 5px;
28
+ padding: 5px 10px;
29
+ margin: 5px 0;
30
+ }
31
+ #languageSelector {
32
+ width: 100%;
33
+ margin-top: 10px;
34
+ padding: 5px;
35
+ border-radius: 5px;
36
+ border: 1px solid #ccc;
37
+ }
38
+ #status {
39
+ color: grey;
40
+ font-weight: 600;
41
+ margin-top: 10px;
42
+ text-align: center;
43
+ }
44
+ #testSpeakerButton {
45
+ display: block;
46
+ margin: 10px auto;
47
+ padding: 10px 20px;
48
+ border: none;
49
+ border-radius: 5px;
50
+ background: #28a745;
51
+ color: white;
52
+ cursor: pointer;
53
+ font-weight: 600;
54
+ }
55
+ #uploadButton {
56
+ display: block;
57
+ margin: 10px auto;
58
+ padding: 10px 20px;
59
+ border: none;
60
+ border-radius: 5px;
61
+ background: #2196F3;
62
+ color: white;
63
+ cursor: pointer;
64
+ font-weight: 600;
65
+ }
66
+ .speaker {
67
+ display: flex;
68
+ justify-content: space-between;
69
+ align-items: center;
70
+ width: 100%;
71
+ margin-top: 10px;
72
+ padding: 5px;
73
+ box-shadow: 0 0 13px #0000003d;
74
+ border-radius: 5px;
75
+ }
76
+ #textInput {
77
+ flex: 1;
78
+ padding: 8px;
79
+ border: none;
80
+ border-radius: 5px;
81
+ outline: none;
82
+ }
83
+ #speech, #sendText {
84
+ padding: 8px 10px;
85
+ border: none;
86
+ border-radius: 5px;
87
+ margin-left: 5px;
88
+ cursor: pointer;
89
+ }
90
+ #speech {
91
+ background-color: #007bff;
92
+ color: white;
93
+ }
94
+ #sendText {
95
+ background-color: #28a745;
96
+ color: white;
97
+ }
98
+ </style>
99
+ </head>
100
+ <body>
101
+ <button id="testSpeakerButton">Speaker Test</button>
102
+ <div class="chat-container">
103
+ <div id="chat-box"></div>
104
+ <select id="languageSelector">
105
+ <option value="English (US)">English (US)</option>
106
+ <option value="Hindi (India)">Hindi (India)</option>
107
+ <option value="Spanish (Spain)">Spanish (Spain)</option>
108
+ <option value="French (France)">French (France)</option>
109
+ <option value="German (Germany)">German (Germany)</option>
110
+ <option value="Arabic (Saudi Arabia)">Arabic (Saudi Arabia)</option>
111
+ </select>
112
+ <input type="file" id="fileUpload" accept=".pdf,.txt,.md,.csv,.xlsx" style="display: none;">
113
+ <button id="uploadButton" onclick="document.getElementById('fileUpload').click()">Upload Document</button>
114
+
115
+ <div class="speaker">
116
+ <input type="text" id="textInput" placeholder="Type your message...">
117
+ <button id="speech">Tap to Speak</button>
118
+ <button id="sendText">Enter</button>
119
+ </div>
120
+ <p id="status"></p>
121
+ </div>
122
+
123
+ <script>
124
+ const statusBar = document.getElementById('status');
125
+
126
+ const speechLangMap = {
127
+ 'English (US)': 'en-US',
128
+ 'Hindi (India)': 'hi-IN',
129
+ 'Spanish (Spain)': 'es-ES',
130
+ 'French (France)': 'fr-FR',
131
+ 'German (Germany)': 'de-DE',
132
+ 'Arabic (Saudi Arabia)': 'ar-SA'
133
+ };
134
+
135
+ const synth = window.speechSynthesis;
136
+ let voices = [];
137
+
138
+ function loadVoices() {
139
+ return new Promise((resolve) => {
140
+ voices = synth.getVoices();
141
+ if (voices.length > 0) {
142
+ resolve(voices);
143
+ } else {
144
+ synth.onvoiceschanged = () => {
145
+ voices = synth.getVoices();
146
+ resolve(voices);
147
+ };
148
+ }
149
+ });
150
+ }
151
+
152
+ async function speakResponse(text, language) {
153
+ const langCode = speechLangMap[language] || 'en-US';
154
+ await loadVoices();
155
+ const utterance = new SpeechSynthesisUtterance(text);
156
+ let selectedVoice = voices.find(voice => voice.lang === langCode);
157
+ if (!selectedVoice) selectedVoice = voices[0];
158
+ utterance.voice = selectedVoice;
159
+ synth.speak(utterance);
160
+ }
161
+
162
+ function runSpeechRecog() {
163
+ const selectedLang = document.getElementById('languageSelector').value;
164
+ const recognition = new (window.SpeechRecognition || window.webkitSpeechRecognition)();
165
+ recognition.lang = speechLangMap[selectedLang] || 'en-US';
166
+ recognition.onstart = () => statusBar.textContent = 'Listening...';
167
+ recognition.onresult = (event) => {
168
+ const transcript = event.results[0][0].transcript;
169
+ sendMessage(transcript, selectedLang);
170
+ };
171
+ recognition.onerror = (event) => statusBar.textContent = `Error: ${event.error}`;
172
+ recognition.onend = () => statusBar.textContent = '';
173
+ recognition.start();
174
+ }
175
+
176
+ async function sendMessage(message, language) {
177
+ showUserMessage(message);
178
+ try {
179
+ const response = await fetch('/api/process_text', {
180
+ method: 'POST',
181
+ headers: { 'Content-Type': 'application/json' },
182
+ body: JSON.stringify({ text: message, language })
183
+ });
184
+ const data = await response.json();
185
+ showBotMessage(data.response);
186
+ speakResponse(data.response, language);
187
+ } catch (error) {
188
+ console.error('Error:', error);
189
+ showBotMessage('Error: Unable to process request.');
190
+ }
191
+ }
192
+
193
+ function showUserMessage(message) {
194
+ const chatBox = document.getElementById('chat-box');
195
+ chatBox.innerHTML += `<div class="user-message">${message}</div>`;
196
+ chatBox.scrollTop = chatBox.scrollHeight;
197
+ }
198
+
199
+ function showBotMessage(message) {
200
+ const chatBox = document.getElementById('chat-box');
201
+ chatBox.innerHTML += `<div class="bot-message">${message}</div>`;
202
+ chatBox.scrollTop = chatBox.scrollHeight;
203
+ }
204
+
205
+ document.getElementById('speech').addEventListener('click', runSpeechRecog);
206
+
207
+ document.getElementById('sendText').addEventListener('click', () => {
208
+ const text = document.getElementById('textInput').value.trim();
209
+ const language = document.getElementById('languageSelector').value;
210
+ if (text !== '') {
211
+ sendMessage(text, language);
212
+ document.getElementById('textInput').value = '';
213
+ }
214
+ });
215
+
216
+ document.getElementById('textInput').addEventListener('keydown', (e) => {
217
+ if (e.key === 'Enter') {
218
+ e.preventDefault();
219
+ document.getElementById('sendText').click();
220
+ }
221
+ });
222
+
223
+ document.getElementById('testSpeakerButton').addEventListener('click', async () => {
224
+ await loadVoices();
225
+ speakResponse("Speaker works fine", "English (US)");
226
+ });
227
+
228
+ document.getElementById('fileUpload').addEventListener('change', async (event) => {
229
+ const file = event.target.files[0];
230
+ if (!file) return;
231
+
232
+ statusBar.textContent = 'Uploading document...';
233
+ const formData = new FormData();
234
+ formData.append('file', file);
235
+
236
+ try {
237
+ const response = await fetch('/api/upload_document', {
238
+ method: 'POST',
239
+ body: formData
240
+ });
241
+ const data = await response.json();
242
+ statusBar.textContent = data.message || data.error;
243
+ } catch (err) {
244
+ statusBar.textContent = 'Error uploading document: ' + err.message;
245
+ console.error('File upload error:', err);
246
+ }
247
+ });
248
+
249
+ window.onload = loadVoices;
250
+ </script>
251
+ </body>
252
+ </html>