|
import torch |
|
from torch import nn |
|
from typing import Optional |
|
from dataclasses import dataclass |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.import_utils import is_xformers_available |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
import math |
|
|
|
@dataclass |
|
class Transformer3DModelOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
def exists(x): |
|
return x is not None |
|
|
|
class CrossAttention(nn.Module): |
|
r""" |
|
copy from diffuser 0.11.1 |
|
A cross attention layer. |
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias=False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
use_relative_position: bool = False, |
|
): |
|
super().__init__() |
|
|
|
inner_dim = dim_head * heads |
|
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
|
|
self.scale = dim_head**-0.5 |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
self._slice_size = None |
|
self._use_memory_efficient_attention_xformers = False |
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) |
|
else: |
|
self.group_norm = None |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) |
|
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(nn.Linear(inner_dim, query_dim)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
def reshape_heads_to_batch_dim(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def reshape_batch_dim_to_heads(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def reshape_for_scores(self, tensor): |
|
|
|
|
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
return tensor |
|
|
|
def same_batch_dim_to_heads(self, tensor): |
|
batch_size, head_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and slice_size > self.sliceable_head_dim: |
|
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") |
|
|
|
self._slice_size = slice_size |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, use_image_num=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
|
|
|
|
dim = query.shape[-1] |
|
query = self.reshape_heads_to_batch_dim(query) |
|
|
|
|
|
if self.added_kv_proj_dim is not None: |
|
key = self.to_k(hidden_states) |
|
value = self.to_v(hidden_states) |
|
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
return hidden_states |
|
|
|
|
|
def _attention(self, query, key, value, attention_mask=None): |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
attention_scores = torch.baddbmm( |
|
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), |
|
query, |
|
key.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
|
|
|
|
|
|
attention_probs = attention_probs.to(value.dtype) |
|
|
|
|
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
|
|
|
|
return hidden_states |
|
|
|
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): |
|
batch_size_attention = query.shape[0] |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype |
|
) |
|
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] |
|
for i in range(hidden_states.shape[0] // slice_size): |
|
start_idx = i * slice_size |
|
end_idx = (i + 1) * slice_size |
|
|
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
|
|
if self.upcast_attention: |
|
query_slice = query_slice.float() |
|
key_slice = key_slice.float() |
|
|
|
attn_slice = torch.baddbmm( |
|
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), |
|
query_slice, |
|
key_slice.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
|
|
if attention_mask is not None: |
|
attn_slice = attn_slice + attention_mask[start_idx:end_idx] |
|
|
|
if self.upcast_softmax: |
|
attn_slice = attn_slice.float() |
|
|
|
attn_slice = attn_slice.softmax(dim=-1) |
|
|
|
|
|
attn_slice = attn_slice.to(value.dtype) |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): |
|
|
|
query = query.contiguous() |
|
key = key.contiguous() |
|
value = value.contiguous() |
|
|
|
|
|
|
|
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) |
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
|
|
|
|
return hidden_states |
|
|
|
class TemporalAttention(CrossAttention): |
|
def __init__(self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias=False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
rotary_emb=None): |
|
super().__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax, added_kv_proj_dim, norm_num_groups) |
|
|
|
self.time_rel_pos_bias = RelativePositionBias(heads=heads, max_distance=32) |
|
self.rotary_emb = rotary_emb |
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
time_rel_pos_bias = self.time_rel_pos_bias(hidden_states.shape[1], device=hidden_states.device) |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
|
|
if self.added_kv_proj_dim is not None: |
|
key = self.to_k(hidden_states) |
|
value = self.to_v(hidden_states) |
|
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask, time_rel_pos_bias) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
return hidden_states |
|
|
|
|
|
def _attention(self, query, key, value, attention_mask=None, time_rel_pos_bias=None): |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
|
|
|
|
|
|
|
|
query = self.scale * rearrange(query, 'b f (h d) -> b h f d', h=self.heads) |
|
key = rearrange(key, 'b f (h d) -> b h f d', h=self.heads) |
|
value = rearrange(value, 'b f (h d) -> b h f d', h=self.heads) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if exists(self.rotary_emb): |
|
query = self.rotary_emb.rotate_queries_or_keys(query) |
|
key = self.rotary_emb.rotate_queries_or_keys(key) |
|
|
|
attention_scores = torch.einsum('... h i d, ... h j d -> ... h i j', query, key) |
|
|
|
|
|
|
|
|
|
attention_scores = attention_scores + time_rel_pos_bias |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_scores = attention_scores - attention_scores.amax(dim = -1, keepdim = True).detach() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = attention_probs.to(value.dtype) |
|
|
|
|
|
|
|
hidden_states = torch.einsum('... h i j, ... h j d -> ... h i d', attention_probs, value) |
|
|
|
|
|
hidden_states = rearrange(hidden_states, 'b h f d -> b f (h d)') |
|
|
|
|
|
return hidden_states |
|
|
|
class RelativePositionBias(nn.Module): |
|
def __init__( |
|
self, |
|
heads=8, |
|
num_buckets=32, |
|
max_distance=128, |
|
): |
|
super().__init__() |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
self.relative_attention_bias = nn.Embedding(num_buckets, heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): |
|
ret = 0 |
|
n = -relative_position |
|
|
|
num_buckets //= 2 |
|
ret += (n < 0).long() * num_buckets |
|
n = torch.abs(n) |
|
|
|
max_exact = num_buckets // 2 |
|
is_small = n < max_exact |
|
|
|
val_if_large = max_exact + ( |
|
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) |
|
).long() |
|
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) |
|
|
|
ret += torch.where(is_small, n, val_if_large) |
|
return ret |
|
|
|
def forward(self, n, device): |
|
q_pos = torch.arange(n, dtype = torch.long, device = device) |
|
k_pos = torch.arange(n, dtype = torch.long, device = device) |
|
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') |
|
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) |
|
values = self.relative_attention_bias(rp_bucket) |
|
return rearrange(values, 'i j h -> h i j') |
|
|
|
class PseudoCrossAttention(CrossAttention): |
|
def forward(self, hidden_states, encoder_hidden_states=None, base_content=None, attention_mask=None, video_length=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
video_length = 17 |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
|
|
dim = query.shape[-1] |
|
query = self.reshape_heads_to_batch_dim(query) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
raise NotImplementedError |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
key = rearrange(key, "(b f) d c -> b f d c", f=video_length).contiguous() |
|
key[:, 1:] = key[:, 1:] + key[:, :1] |
|
key = rearrange(key, "b f d c -> (b f) d c").contiguous() |
|
|
|
value = rearrange(value, "(b f) d c -> b f d c", f=video_length).contiguous() |
|
value[:, 1:] = value[:, 1:] + value[:, :1] |
|
value = rearrange(value, "b f d c -> (b f) d c").contiguous() |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
if self._use_memory_efficient_attention_xformers: |
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
return hidden_states |
|
|