maxin-cn's picture
Upload folder using huggingface_hub
be791d6 verified
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
try:
from diffusers.utils import maybe_allow_in_graph
except:
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import get_activation
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings
from diffusers.models.lora import LoRACompatibleLinear
from einops import rearrange, repeat
try:
from temporal_attention import TemporalAttention, CrossAttention, PseudoCrossAttention
except:
from .temporal_attention import TemporalAttention, CrossAttention, PseudoCrossAttention
@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm",
final_dropout: bool = False,
rotary_emb=None,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Temporal-Attn
self.attn_temp = TemporalAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=None,
upcast_attention=upcast_attention,
rotary_emb=rotary_emb,
)
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
# Temporal text cross attention
# self.attn_temp_text = CrossAttention(query_dim=dim,
# cross_attention_dim=cross_attention_dim,
# heads=num_attention_heads,
# dim_head=attention_head_dim,
# dropout=dropout,
# bias=attention_bias,
# upcast_attention=upcast_attention,
# )
# self.norm_temp_text = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
# nn.init.zeros_(self.attn_temp_text.to_out[0].weight.data)
# 5. Feed-forward
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
video_length=None,
use_image_num=None,
):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
# 2. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# Temporal Attention
if self.training and use_image_num != 0:
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length + use_image_num).contiguous()
hidden_states_video = hidden_states[:, :video_length, :]
hidden_states_image = hidden_states[:, video_length:, :]
# with torch.cuda.amp.autocast(dtype=torch.float32):
norm_hidden_states_video = (
self.norm_temp(hidden_states_video, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states_video)
)
hidden_states_video = self.attn_temp(norm_hidden_states_video) + hidden_states_video
# # # Temporal Text Cross Attention
# encoder_hidden_states_reshape = rearrange(encoder_hidden_states, '(b f) d c -> b f d c', f=video_length + use_image_num).contiguous()
# encoder_hidden_states_video = encoder_hidden_states_reshape[:, 0, ...].contiguous()
# encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b d c -> (b t) d c', t=d).contiguous()
# norm_hidden_states_video = (
# self.norm_temp_text(hidden_states_video, timestep) if self.use_ada_layer_norm else self.norm_temp_text(hidden_states_video)
# )
# hidden_states_video = self.attn_temp_text(norm_hidden_states_video, encoder_hidden_states=encoder_hidden_states_video) + hidden_states_video
# ################## end Temporal Text Cross Attention ###################
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1)
# hidden_states = torch.cat([hidden_states_video.to(hidden_states_image.dtype), hidden_states_image], dim=1)
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d).contiguous()
else:
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length + use_image_num).contiguous()
norm_hidden_states = (
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
)
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
# # # Temporal Text Cross Attention
# encoder_hidden_states_reshape = rearrange(encoder_hidden_states, '(b f) d c -> b f d c', f=video_length + use_image_num).contiguous()
# encoder_hidden_states_video = encoder_hidden_states_reshape[:, 0, ...].contiguous()
# encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b d c -> (b t) d c', t=d).contiguous()
# norm_hidden_states = (
# self.norm_temp_text(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp_text(hidden_states)
# )
# hidden_states = self.attn_temp_text(norm_hidden_states, encoder_hidden_states=encoder_hidden_states_video) + hidden_states
# ################# end Temporal Text Cross Attention ###################
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d).contiguous()
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh")
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states):
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class GELU(nn.Module):
r"""
GELU activation function with tanh approximation support with `approximate="tanh"`.
"""
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out)
self.approximate = approximate
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate, approximate=self.approximate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = LoRACompatibleLinear(dim_in, dim_out * 2)
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class ApproximateGELU(nn.Module):
"""
The approximate form of Gaussian Error Linear Unit (GELU)
For more details, see section 2: https://arxiv.org/abs/1606.08415
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out)
def forward(self, x):
x = self.proj(x)
return x * torch.sigmoid(1.702 * x)
class AdaLayerNorm(nn.Module):
"""
Norm layer modified to incorporate timestep embeddings.
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x, timestep):
emb = self.linear(self.silu(self.emb(timestep)))
scale, shift = torch.chunk(emb, 2)
x = self.norm(x) * (1 + scale) + shift
return x
class AdaLayerNormZero(nn.Module):
"""
Norm layer adaptive layer norm zero (adaLN-Zero).
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, timestep, class_labels, hidden_dtype=None):
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaGroupNorm(nn.Module):
"""
GroupNorm layer modified to incorporate timestep embeddings.
"""
def __init__(
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
):
super().__init__()
self.num_groups = num_groups
self.eps = eps
if act_fn is None:
self.act = None
else:
self.act = get_activation(act_fn)
self.linear = nn.Linear(embedding_dim, out_dim * 2)
def forward(self, x, emb):
if self.act:
emb = self.act(emb)
emb = self.linear(emb)
emb = emb[:, :, None, None]
scale, shift = emb.chunk(2, dim=1)
x = F.group_norm(x, self.num_groups, eps=self.eps)
x = x * (1 + scale) + shift
return x