Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,542 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import librosa
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
-
|
8 |
-
import
|
9 |
-
import
|
10 |
-
import
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
logging.
|
15 |
-
logging
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import glob
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
import argparse
|
6 |
+
import logging
|
7 |
+
import json
|
8 |
+
import subprocess
|
9 |
+
import warnings
|
10 |
+
import random
|
11 |
+
import functools
|
12 |
+
|
13 |
import librosa
|
14 |
import numpy as np
|
15 |
+
from scipy.io.wavfile import read
|
16 |
+
import torch
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from modules.commons import sequence_mask
|
19 |
+
from hubert import hubert_model
|
20 |
+
|
21 |
+
MATPLOTLIB_FLAG = False
|
22 |
+
|
23 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
24 |
+
logger = logging
|
25 |
+
|
26 |
+
f0_bin = 256
|
27 |
+
f0_max = 1100.0
|
28 |
+
f0_min = 50.0
|
29 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
30 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
31 |
+
|
32 |
+
|
33 |
+
# def normalize_f0(f0, random_scale=True):
|
34 |
+
# f0_norm = f0.clone() # create a copy of the input Tensor
|
35 |
+
# batch_size, _, frame_length = f0_norm.shape
|
36 |
+
# for i in range(batch_size):
|
37 |
+
# means = torch.mean(f0_norm[i, 0, :])
|
38 |
+
# if random_scale:
|
39 |
+
# factor = random.uniform(0.8, 1.2)
|
40 |
+
# else:
|
41 |
+
# factor = 1
|
42 |
+
# f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
|
43 |
+
# return f0_norm
|
44 |
+
# def normalize_f0(f0, random_scale=True):
|
45 |
+
# means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
|
46 |
+
# if random_scale:
|
47 |
+
# factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
|
48 |
+
# else:
|
49 |
+
# factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
|
50 |
+
# f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
51 |
+
# return f0_norm
|
52 |
+
|
53 |
+
def deprecated(func):
|
54 |
+
"""This is a decorator which can be used to mark functions
|
55 |
+
as deprecated. It will result in a warning being emitted
|
56 |
+
when the function is used."""
|
57 |
+
@functools.wraps(func)
|
58 |
+
def new_func(*args, **kwargs):
|
59 |
+
warnings.simplefilter('always', DeprecationWarning) # turn off filter
|
60 |
+
warnings.warn("Call to deprecated function {}.".format(func.__name__),
|
61 |
+
category=DeprecationWarning,
|
62 |
+
stacklevel=2)
|
63 |
+
warnings.simplefilter('default', DeprecationWarning) # reset filter
|
64 |
+
return func(*args, **kwargs)
|
65 |
+
return new_func
|
66 |
+
|
67 |
+
def normalize_f0(f0, x_mask, uv, random_scale=True):
|
68 |
+
# calculate means based on x_mask
|
69 |
+
uv_sum = torch.sum(uv, dim=1, keepdim=True)
|
70 |
+
uv_sum[uv_sum == 0] = 9999
|
71 |
+
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
|
72 |
+
|
73 |
+
if random_scale:
|
74 |
+
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
|
75 |
+
else:
|
76 |
+
factor = torch.ones(f0.shape[0], 1).to(f0.device)
|
77 |
+
# normalize f0 based on means and factor
|
78 |
+
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
79 |
+
if torch.isnan(f0_norm).any():
|
80 |
+
exit(0)
|
81 |
+
return f0_norm * x_mask
|
82 |
+
|
83 |
+
def compute_f0_uv_torchcrepe(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512,device=None,cr_threshold=0.05):
|
84 |
+
from modules.crepe import CrepePitchExtractor
|
85 |
+
x = wav_numpy
|
86 |
+
if p_len is None:
|
87 |
+
p_len = x.shape[0]//hop_length
|
88 |
+
else:
|
89 |
+
assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
|
90 |
+
|
91 |
+
f0_min = 50
|
92 |
+
f0_max = 1100
|
93 |
+
F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=cr_threshold)
|
94 |
+
f0,uv = F0Creper(x[None,:].float(),sampling_rate,pad_to=p_len)
|
95 |
+
return f0,uv
|
96 |
+
|
97 |
+
def plot_data_to_numpy(x, y):
|
98 |
+
global MATPLOTLIB_FLAG
|
99 |
+
if not MATPLOTLIB_FLAG:
|
100 |
+
import matplotlib
|
101 |
+
matplotlib.use("Agg")
|
102 |
+
MATPLOTLIB_FLAG = True
|
103 |
+
mpl_logger = logging.getLogger('matplotlib')
|
104 |
+
mpl_logger.setLevel(logging.WARNING)
|
105 |
+
import matplotlib.pylab as plt
|
106 |
+
import numpy as np
|
107 |
+
|
108 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
109 |
+
plt.plot(x)
|
110 |
+
plt.plot(y)
|
111 |
+
plt.tight_layout()
|
112 |
+
|
113 |
+
fig.canvas.draw()
|
114 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
115 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
116 |
+
plt.close()
|
117 |
+
return data
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def interpolate_f0(f0):
|
122 |
+
|
123 |
+
data = np.reshape(f0, (f0.size, 1))
|
124 |
+
|
125 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
126 |
+
vuv_vector[data > 0.0] = 1.0
|
127 |
+
vuv_vector[data <= 0.0] = 0.0
|
128 |
+
|
129 |
+
ip_data = data
|
130 |
+
|
131 |
+
frame_number = data.size
|
132 |
+
last_value = 0.0
|
133 |
+
for i in range(frame_number):
|
134 |
+
if data[i] <= 0.0:
|
135 |
+
j = i + 1
|
136 |
+
for j in range(i + 1, frame_number):
|
137 |
+
if data[j] > 0.0:
|
138 |
+
break
|
139 |
+
if j < frame_number - 1:
|
140 |
+
if last_value > 0.0:
|
141 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
142 |
+
for k in range(i, j):
|
143 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
144 |
+
else:
|
145 |
+
for k in range(i, j):
|
146 |
+
ip_data[k] = data[j]
|
147 |
+
else:
|
148 |
+
for k in range(i, frame_number):
|
149 |
+
ip_data[k] = last_value
|
150 |
+
else:
|
151 |
+
ip_data[i] = data[i] # this may not be necessary
|
152 |
+
last_value = data[i]
|
153 |
+
|
154 |
+
return ip_data[:,0], vuv_vector[:,0]
|
155 |
+
|
156 |
+
|
157 |
+
def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
158 |
+
import parselmouth
|
159 |
+
x = wav_numpy
|
160 |
+
if p_len is None:
|
161 |
+
p_len = x.shape[0]//hop_length
|
162 |
+
else:
|
163 |
+
assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
|
164 |
+
time_step = hop_length / sampling_rate * 1000
|
165 |
+
f0_min = 50
|
166 |
+
f0_max = 1100
|
167 |
+
f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
|
168 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
169 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
170 |
+
|
171 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
172 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
173 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
174 |
+
return f0
|
175 |
+
|
176 |
+
def resize_f0(x, target_len):
|
177 |
+
source = np.array(x)
|
178 |
+
source[source<0.001] = np.nan
|
179 |
+
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
180 |
+
res = np.nan_to_num(target)
|
181 |
+
return res
|
182 |
+
|
183 |
+
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
184 |
+
import pyworld
|
185 |
+
if p_len is None:
|
186 |
+
p_len = wav_numpy.shape[0]//hop_length
|
187 |
+
f0, t = pyworld.dio(
|
188 |
+
wav_numpy.astype(np.double),
|
189 |
+
fs=sampling_rate,
|
190 |
+
f0_ceil=800,
|
191 |
+
frame_period=1000 * hop_length / sampling_rate,
|
192 |
+
)
|
193 |
+
f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
|
194 |
+
for index, pitch in enumerate(f0):
|
195 |
+
f0[index] = round(pitch, 1)
|
196 |
+
return resize_f0(f0, p_len)
|
197 |
+
|
198 |
+
def f0_to_coarse(f0):
|
199 |
+
is_torch = isinstance(f0, torch.Tensor)
|
200 |
+
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
|
201 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
|
202 |
+
|
203 |
+
f0_mel[f0_mel <= 1] = 1
|
204 |
+
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
|
205 |
+
f0_coarse = (f0_mel + 0.5).int() if is_torch else np.rint(f0_mel).astype(np.int)
|
206 |
+
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
|
207 |
+
return f0_coarse
|
208 |
+
|
209 |
+
|
210 |
+
def get_hubert_model():
|
211 |
+
vec_path = "hubert/checkpoint_best_legacy_500.pt"
|
212 |
+
print("load model(s) from {}".format(vec_path))
|
213 |
+
from fairseq import checkpoint_utils
|
214 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
215 |
+
[vec_path],
|
216 |
+
suffix="",
|
217 |
+
)
|
218 |
+
model = models[0]
|
219 |
+
model.eval()
|
220 |
+
return model
|
221 |
+
|
222 |
+
def get_hubert_content(hmodel, wav_16k_tensor):
|
223 |
+
feats = wav_16k_tensor
|
224 |
+
if feats.dim() == 2: # double channels
|
225 |
+
feats = feats.mean(-1)
|
226 |
+
assert feats.dim() == 1, feats.dim()
|
227 |
+
feats = feats.view(1, -1)
|
228 |
+
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
229 |
+
inputs = {
|
230 |
+
"source": feats.to(wav_16k_tensor.device),
|
231 |
+
"padding_mask": padding_mask.to(wav_16k_tensor.device),
|
232 |
+
"output_layer": 9, # layer 9
|
233 |
+
}
|
234 |
+
with torch.no_grad():
|
235 |
+
logits = hmodel.extract_features(**inputs)
|
236 |
+
feats = hmodel.final_proj(logits[0])
|
237 |
+
return feats.transpose(1, 2)
|
238 |
+
|
239 |
+
|
240 |
+
def get_content(cmodel, y):
|
241 |
+
with torch.no_grad():
|
242 |
+
c = cmodel.extract_features(y.squeeze(1))[0]
|
243 |
+
c = c.transpose(1, 2)
|
244 |
+
return c
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
249 |
+
assert os.path.isfile(checkpoint_path)
|
250 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
251 |
+
iteration = checkpoint_dict['iteration']
|
252 |
+
learning_rate = checkpoint_dict['learning_rate']
|
253 |
+
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
|
254 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
255 |
+
saved_state_dict = checkpoint_dict['model']
|
256 |
+
if hasattr(model, 'module'):
|
257 |
+
state_dict = model.module.state_dict()
|
258 |
+
else:
|
259 |
+
state_dict = model.state_dict()
|
260 |
+
new_state_dict = {}
|
261 |
+
for k, v in state_dict.items():
|
262 |
+
try:
|
263 |
+
# assert "dec" in k or "disc" in k
|
264 |
+
# print("load", k)
|
265 |
+
new_state_dict[k] = saved_state_dict[k]
|
266 |
+
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
|
267 |
+
except:
|
268 |
+
print("error, %s is not in the checkpoint" % k)
|
269 |
+
logger.info("%s is not in the checkpoint" % k)
|
270 |
+
new_state_dict[k] = v
|
271 |
+
if hasattr(model, 'module'):
|
272 |
+
model.module.load_state_dict(new_state_dict)
|
273 |
+
else:
|
274 |
+
model.load_state_dict(new_state_dict)
|
275 |
+
print("load ")
|
276 |
+
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
277 |
+
checkpoint_path, iteration))
|
278 |
+
return model, optimizer, learning_rate, iteration
|
279 |
+
|
280 |
+
|
281 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
282 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
283 |
+
iteration, checkpoint_path))
|
284 |
+
if hasattr(model, 'module'):
|
285 |
+
state_dict = model.module.state_dict()
|
286 |
+
else:
|
287 |
+
state_dict = model.state_dict()
|
288 |
+
torch.save({'model': state_dict,
|
289 |
+
'iteration': iteration,
|
290 |
+
'optimizer': optimizer.state_dict(),
|
291 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
292 |
+
|
293 |
+
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
|
294 |
+
"""Freeing up space by deleting saved ckpts
|
295 |
+
|
296 |
+
Arguments:
|
297 |
+
path_to_models -- Path to the model directory
|
298 |
+
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
299 |
+
sort_by_time -- True -> chronologically delete ckpts
|
300 |
+
False -> lexicographically delete ckpts
|
301 |
+
"""
|
302 |
+
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
303 |
+
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
|
304 |
+
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
|
305 |
+
sort_key = time_key if sort_by_time else name_key
|
306 |
+
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
|
307 |
+
to_del = [os.path.join(path_to_models, fn) for fn in
|
308 |
+
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
309 |
+
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
310 |
+
del_routine = lambda x: [os.remove(x), del_info(x)]
|
311 |
+
rs = [del_routine(fn) for fn in to_del]
|
312 |
+
|
313 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
314 |
+
for k, v in scalars.items():
|
315 |
+
writer.add_scalar(k, v, global_step)
|
316 |
+
for k, v in histograms.items():
|
317 |
+
writer.add_histogram(k, v, global_step)
|
318 |
+
for k, v in images.items():
|
319 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
320 |
+
for k, v in audios.items():
|
321 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
322 |
+
|
323 |
+
|
324 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
325 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
326 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
327 |
+
x = f_list[-1]
|
328 |
+
print(x)
|
329 |
+
return x
|
330 |
+
|
331 |
+
|
332 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
333 |
+
global MATPLOTLIB_FLAG
|
334 |
+
if not MATPLOTLIB_FLAG:
|
335 |
+
import matplotlib
|
336 |
+
matplotlib.use("Agg")
|
337 |
+
MATPLOTLIB_FLAG = True
|
338 |
+
mpl_logger = logging.getLogger('matplotlib')
|
339 |
+
mpl_logger.setLevel(logging.WARNING)
|
340 |
+
import matplotlib.pylab as plt
|
341 |
+
import numpy as np
|
342 |
+
|
343 |
+
fig, ax = plt.subplots(figsize=(10,2))
|
344 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
345 |
+
interpolation='none')
|
346 |
+
plt.colorbar(im, ax=ax)
|
347 |
+
plt.xlabel("Frames")
|
348 |
+
plt.ylabel("Channels")
|
349 |
+
plt.tight_layout()
|
350 |
+
|
351 |
+
fig.canvas.draw()
|
352 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
353 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
354 |
+
plt.close()
|
355 |
+
return data
|
356 |
+
|
357 |
+
|
358 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
359 |
+
global MATPLOTLIB_FLAG
|
360 |
+
if not MATPLOTLIB_FLAG:
|
361 |
+
import matplotlib
|
362 |
+
matplotlib.use("Agg")
|
363 |
+
MATPLOTLIB_FLAG = True
|
364 |
+
mpl_logger = logging.getLogger('matplotlib')
|
365 |
+
mpl_logger.setLevel(logging.WARNING)
|
366 |
+
import matplotlib.pylab as plt
|
367 |
+
import numpy as np
|
368 |
+
|
369 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
370 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
371 |
+
interpolation='none')
|
372 |
+
fig.colorbar(im, ax=ax)
|
373 |
+
xlabel = 'Decoder timestep'
|
374 |
+
if info is not None:
|
375 |
+
xlabel += '\n\n' + info
|
376 |
+
plt.xlabel(xlabel)
|
377 |
+
plt.ylabel('Encoder timestep')
|
378 |
+
plt.tight_layout()
|
379 |
+
|
380 |
+
fig.canvas.draw()
|
381 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
382 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
383 |
+
plt.close()
|
384 |
+
return data
|
385 |
+
|
386 |
+
|
387 |
+
def load_wav_to_torch(full_path):
|
388 |
+
sampling_rate, data = read(full_path)
|
389 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
390 |
+
|
391 |
+
|
392 |
+
def load_filepaths_and_text(filename, split="|"):
|
393 |
+
with open(filename, encoding='utf-8') as f:
|
394 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
395 |
+
return filepaths_and_text
|
396 |
+
|
397 |
+
|
398 |
+
def get_hparams(init=True):
|
399 |
+
parser = argparse.ArgumentParser()
|
400 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
401 |
+
help='JSON file for configuration')
|
402 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
403 |
+
help='Model name')
|
404 |
+
|
405 |
+
args = parser.parse_args()
|
406 |
+
model_dir = os.path.join("./logs", args.model)
|
407 |
+
|
408 |
+
if not os.path.exists(model_dir):
|
409 |
+
os.makedirs(model_dir)
|
410 |
+
|
411 |
+
config_path = args.config
|
412 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
413 |
+
if init:
|
414 |
+
with open(config_path, "r") as f:
|
415 |
+
data = f.read()
|
416 |
+
with open(config_save_path, "w") as f:
|
417 |
+
f.write(data)
|
418 |
+
else:
|
419 |
+
with open(config_save_path, "r") as f:
|
420 |
+
data = f.read()
|
421 |
+
config = json.loads(data)
|
422 |
+
|
423 |
+
hparams = HParams(**config)
|
424 |
+
hparams.model_dir = model_dir
|
425 |
+
return hparams
|
426 |
+
|
427 |
+
|
428 |
+
def get_hparams_from_dir(model_dir):
|
429 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
430 |
+
with open(config_save_path, "r") as f:
|
431 |
+
data = f.read()
|
432 |
+
config = json.loads(data)
|
433 |
+
|
434 |
+
hparams =HParams(**config)
|
435 |
+
hparams.model_dir = model_dir
|
436 |
+
return hparams
|
437 |
+
|
438 |
+
|
439 |
+
def get_hparams_from_file(config_path):
|
440 |
+
with open(config_path, "r") as f:
|
441 |
+
data = f.read()
|
442 |
+
config = json.loads(data)
|
443 |
+
|
444 |
+
hparams =HParams(**config)
|
445 |
+
return hparams
|
446 |
+
|
447 |
+
|
448 |
+
def check_git_hash(model_dir):
|
449 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
450 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
451 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
452 |
+
source_dir
|
453 |
+
))
|
454 |
+
return
|
455 |
+
|
456 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
457 |
+
|
458 |
+
path = os.path.join(model_dir, "githash")
|
459 |
+
if os.path.exists(path):
|
460 |
+
saved_hash = open(path).read()
|
461 |
+
if saved_hash != cur_hash:
|
462 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
463 |
+
saved_hash[:8], cur_hash[:8]))
|
464 |
+
else:
|
465 |
+
open(path, "w").write(cur_hash)
|
466 |
+
|
467 |
+
|
468 |
+
def get_logger(model_dir, filename="train.log"):
|
469 |
+
global logger
|
470 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
471 |
+
logger.setLevel(logging.DEBUG)
|
472 |
+
|
473 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
474 |
+
if not os.path.exists(model_dir):
|
475 |
+
os.makedirs(model_dir)
|
476 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
477 |
+
h.setLevel(logging.DEBUG)
|
478 |
+
h.setFormatter(formatter)
|
479 |
+
logger.addHandler(h)
|
480 |
+
return logger
|
481 |
+
|
482 |
+
|
483 |
+
def repeat_expand_2d(content, target_len):
|
484 |
+
# content : [h, t]
|
485 |
+
|
486 |
+
src_len = content.shape[-1]
|
487 |
+
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
|
488 |
+
temp = torch.arange(src_len+1) * target_len / src_len
|
489 |
+
current_pos = 0
|
490 |
+
for i in range(target_len):
|
491 |
+
if i < temp[current_pos+1]:
|
492 |
+
target[:, i] = content[:, current_pos]
|
493 |
+
else:
|
494 |
+
current_pos += 1
|
495 |
+
target[:, i] = content[:, current_pos]
|
496 |
+
|
497 |
+
return target
|
498 |
+
|
499 |
+
|
500 |
+
def mix_model(model_paths,mix_rate,mode):
|
501 |
+
mix_rate = torch.FloatTensor(mix_rate)/100
|
502 |
+
model_tem = torch.load(model_paths[0])
|
503 |
+
models = [torch.load(path)["model"] for path in model_paths]
|
504 |
+
if mode == 0:
|
505 |
+
mix_rate = F.softmax(mix_rate,dim=0)
|
506 |
+
for k in model_tem["model"].keys():
|
507 |
+
model_tem["model"][k] = torch.zeros_like(model_tem["model"][k])
|
508 |
+
for i,model in enumerate(models):
|
509 |
+
model_tem["model"][k] += model[k]*mix_rate[i]
|
510 |
+
torch.save(model_tem,os.path.join(os.path.curdir,"output.pth"))
|
511 |
+
return os.path.join(os.path.curdir,"output.pth")
|
512 |
+
|
513 |
+
class HParams():
|
514 |
+
def __init__(self, **kwargs):
|
515 |
+
for k, v in kwargs.items():
|
516 |
+
if type(v) == dict:
|
517 |
+
v = HParams(**v)
|
518 |
+
self[k] = v
|
519 |
+
|
520 |
+
def keys(self):
|
521 |
+
return self.__dict__.keys()
|
522 |
+
|
523 |
+
def items(self):
|
524 |
+
return self.__dict__.items()
|
525 |
+
|
526 |
+
def values(self):
|
527 |
+
return self.__dict__.values()
|
528 |
+
|
529 |
+
def __len__(self):
|
530 |
+
return len(self.__dict__)
|
531 |
+
|
532 |
+
def __getitem__(self, key):
|
533 |
+
return getattr(self, key)
|
534 |
+
|
535 |
+
def __setitem__(self, key, value):
|
536 |
+
return setattr(self, key, value)
|
537 |
+
|
538 |
+
def __contains__(self, key):
|
539 |
+
return key in self.__dict__
|
540 |
+
|
541 |
+
def __repr__(self):
|
542 |
+
return self.__dict__.__repr__()
|