File size: 16,749 Bytes
c234a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "!pip install -U scikit-learn"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "yBUpTF0liOBf",
        "outputId": "e71b2db0-5438-400e-891c-53ee35c10e4f"
      },
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.4.2)\n",
            "Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.25.2)\n",
            "Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4)\n",
            "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.0)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "QhegGo_LT4a_",
        "outputId": "59e8d839-82e5-41ab-ca92-35721dcd69a0"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "    N   P   K  temperature   humidity        ph    rainfall  Total_Nutrients  \\\n",
            "0  90  42  43    20.879744  82.002744  6.502985  202.935536              175   \n",
            "1  85  58  41    21.770462  80.319644  7.038096  226.655537              184   \n",
            "2  60  55  44    23.004459  82.320763  7.840207  263.964248              159   \n",
            "3  74  35  40    26.491096  80.158363  6.980401  242.864034              149   \n",
            "4  78  42  42    20.130175  81.604873  7.628473  262.717340              162   \n",
            "\n",
            "   Temperature_Humidity  Log_Rainfall  Label  Label_Encoded  \n",
            "0           1712.196283      5.317804  wheat              0  \n",
            "1           1748.595734      5.427834  wheat              0  \n",
            "2           1893.744627      5.579595  wheat              0  \n",
            "3           2123.482908      5.496611  wheat              0  \n",
            "4           1642.720357      5.574878  wheat              0  \n",
            "<class 'pandas.core.frame.DataFrame'>\n",
            "RangeIndex: 2200 entries, 0 to 2199\n",
            "Data columns (total 12 columns):\n",
            " #   Column                Non-Null Count  Dtype  \n",
            "---  ------                --------------  -----  \n",
            " 0   N                     2200 non-null   int64  \n",
            " 1   P                     2200 non-null   int64  \n",
            " 2   K                     2200 non-null   int64  \n",
            " 3   temperature           2200 non-null   float64\n",
            " 4   humidity              2200 non-null   float64\n",
            " 5   ph                    2200 non-null   float64\n",
            " 6   rainfall              2200 non-null   float64\n",
            " 7   Total_Nutrients       2200 non-null   int64  \n",
            " 8   Temperature_Humidity  2200 non-null   float64\n",
            " 9   Log_Rainfall          2200 non-null   float64\n",
            " 10  Label                 2200 non-null   object \n",
            " 11  Label_Encoded         2200 non-null   int64  \n",
            "dtypes: float64(6), int64(5), object(1)\n",
            "memory usage: 206.4+ KB\n",
            "None\n"
          ]
        }
      ],
      "source": [
        "import pandas as pd\n",
        "\n",
        "# Load the dataset\n",
        "data = pd.read_csv('/content/Crop_Dataset.csv')\n",
        "\n",
        "# Display the first few rows and the data info\n",
        "print(data.head())\n",
        "print(data.info())\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
        "\n",
        "# Assuming 'Label' is the column with categorical data\n",
        "if data['Label'].dtype == 'object':\n",
        "    encoder = LabelEncoder()\n",
        "    data['Label_Encoded'] = encoder.fit_transform(data['Label'])\n",
        "    y = data['Label_Encoded']\n",
        "else:\n",
        "    y = data['Label']\n",
        "\n",
        "# Exclude the label column from numeric operations\n",
        "numeric_features = data.select_dtypes(include=['int64', 'float64'])\n",
        "X = numeric_features.drop(['Label_Encoded'], axis=1, errors='ignore')\n",
        "\n",
        "# Scaling numeric features\n",
        "scaler = StandardScaler()\n",
        "X_scaled = scaler.fit_transform(X)"
      ],
      "metadata": {
        "id": "8YDm7cLGVAdC"
      },
      "execution_count": 5,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "print(X.head())"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "bxlFqxemUwVN",
        "outputId": "8b0006fe-4fe9-4b98-8d8f-f66bdb4c9b0e"
      },
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "    N   P   K  temperature   humidity        ph    rainfall  Total_Nutrients  \\\n",
            "0  90  42  43    20.879744  82.002744  6.502985  202.935536              175   \n",
            "1  85  58  41    21.770462  80.319644  7.038096  226.655537              184   \n",
            "2  60  55  44    23.004459  82.320763  7.840207  263.964248              159   \n",
            "3  74  35  40    26.491096  80.158363  6.980401  242.864034              149   \n",
            "4  78  42  42    20.130175  81.604873  7.628473  262.717340              162   \n",
            "\n",
            "   Temperature_Humidity  Log_Rainfall  \n",
            "0           1712.196283      5.317804  \n",
            "1           1748.595734      5.427834  \n",
            "2           1893.744627      5.579595  \n",
            "3           2123.482908      5.496611  \n",
            "4           1642.720357      5.574878  \n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(y.head())\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Xfyef1ZHVlv9",
        "outputId": "1124a98a-7088-4beb-c99f-fc99695bce26"
      },
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "0    21\n",
            "1    21\n",
            "2    21\n",
            "3    21\n",
            "4    21\n",
            "Name: Label_Encoded, dtype: int64\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.model_selection import train_test_split\n",
        "\n",
        "# Split the dataset into training and testing sets\n",
        "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
        "X_train, X_test, y_train, y_test\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "qeet3FQuWMYa",
        "outputId": "3134ee1c-da4a-49c9-b23a-a2824087bce7"
      },
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "(array([[-0.90904306, -1.13294593, -0.67439784, ..., -1.31493084,\n",
              "         -0.49027085,  0.24780902],\n",
              "        [-0.36716896,  0.77739624, -0.57565467, ..., -0.21356106,\n",
              "          0.07991257, -0.46657409],\n",
              "        [-1.17998011,  0.59545889, -0.45716288, ..., -0.58902803,\n",
              "         -0.16692839, -1.2389468 ],\n",
              "        ...,\n",
              "        [-1.07160529, -0.5264881 , -0.33867109, ..., -0.9269483 ,\n",
              "         -0.5842483 ,  0.199803  ],\n",
              "        [-1.07160529,  2.14192637,  3.07784228, ...,  2.33961433,\n",
              "         -1.1140468 , -0.41541788],\n",
              "        [-0.50263749,  0.74707335, -0.51640878, ..., -0.25110776,\n",
              "         -0.51417889, -0.93933906]]),\n",
              " array([[ 1.36682815, -1.10262304, -0.02269297, ...,  0.16190591,\n",
              "          1.34399451, -2.20354942],\n",
              "        [ 1.28554704, -1.37552907,  0.05630155, ...,  0.06178138,\n",
              "          0.58762688, -1.07859766],\n",
              "        [ 0.22889255,  0.26190709,  0.01680429, ...,  0.22448374,\n",
              "          3.13720326,  0.44554626],\n",
              "        ...,\n",
              "        [ 1.90870225, -0.19293629, -0.63490057, ...,  0.39970166,\n",
              "          0.02516414, -0.38782438],\n",
              "        [ 1.77323373, -0.04132183, -0.57565467, ...,  0.43724835,\n",
              "         -0.17876826, -0.5282515 ],\n",
              "        [-1.23416752,  0.44384444, -0.55590604, ..., -0.73921482,\n",
              "         -1.75019501,  0.99674145]]),\n",
              " 1656     4\n",
              " 752      2\n",
              " 892     12\n",
              " 1041     7\n",
              " 1179     3\n",
              "         ..\n",
              " 1638     4\n",
              " 1095     7\n",
              " 1130     3\n",
              " 1294     9\n",
              " 860     12\n",
              " Name: Label_Encoded, Length: 1760, dtype: int64,\n",
              " 1451    16\n",
              " 1334    13\n",
              " 1761    18\n",
              " 1735    18\n",
              " 1576    11\n",
              "         ..\n",
              " 59      21\n",
              " 71      21\n",
              " 1908    14\n",
              " 1958    14\n",
              " 482      8\n",
              " Name: Label_Encoded, Length: 440, dtype: int64)"
            ]
          },
          "metadata": {},
          "execution_count": 8
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.tree import DecisionTreeClassifier\n",
        "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
        "from sklearn.svm import SVC\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "from sklearn.metrics import accuracy_score\n",
        "import joblib\n",
        "\n",
        "\n",
        "# Define the models\n",
        "models = {\n",
        "    'Decision Tree': DecisionTreeClassifier(random_state=42),\n",
        "    'Random Forest': RandomForestClassifier(random_state=42),\n",
        "    'SVM': SVC(kernel='rbf', random_state=42),\n",
        "    'KNN': KNeighborsClassifier(),\n",
        "    'Gradient Boosting': GradientBoostingClassifier(random_state=42)\n",
        "}\n",
        "\n",
        "# Train each model and evaluate on the training set\n",
        "train_accuracies = {}\n",
        "for name, model in models.items():\n",
        "    model.fit(X_train, y_train)\n",
        "    y_train_pred = model.predict(X_train)\n",
        "    train_accuracy = accuracy_score(y_train, y_train_pred)\n",
        "    train_accuracies[name] = train_accuracy\n",
        "    print(f\"{name} training accuracy: {train_accuracy:.4f}\")\n",
        "\n",
        "    # Save the model\n",
        "    model_filename = f'{name.replace(\" \", \"_\").lower()}_model.joblib'\n",
        "    joblib.dump(model, model_filename)\n",
        "    print(f\"Saved {name} model as {model_filename}\")\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "TsmaeAEYbj6Y",
        "outputId": "0b6e493c-9421-4d88-8e97-0591713968e3"
      },
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Decision Tree training accuracy: 1.0000\n",
            "Saved Decision Tree model as decision_tree_model.joblib\n",
            "Random Forest training accuracy: 1.0000\n",
            "Saved Random Forest model as random_forest_model.joblib\n",
            "SVM training accuracy: 0.9875\n",
            "Saved SVM model as svm_model.joblib\n",
            "KNN training accuracy: 0.9881\n",
            "Saved KNN model as knn_model.joblib\n",
            "Gradient Boosting training accuracy: 1.0000\n",
            "Saved Gradient Boosting model as gradient_boosting_model.joblib\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Example new data for prediction\n",
        "new_data = [[129,\t43,\t16, 25.5503704,\t77.85055621,\t6.73210948,\t78.58488484,\t188,\t1989.110547,\t4.376824186]]  # Adjust these values as necessary\n",
        "new_data_scaled = scaler.transform(new_data)  # Assuming 'scaler' is already fitted and saved/loaded similarly\n",
        "\n",
        "# Load models and make predictions\n",
        "predictions = {}\n",
        "for name in models.keys():\n",
        "    model_filename = f'{name.replace(\" \", \"_\").lower()}_model.joblib'\n",
        "    loaded_model = joblib.load(model_filename)\n",
        "    prediction = loaded_model.predict(new_data_scaled)\n",
        "    predictions[name] = prediction\n",
        "\n",
        "    # Assuming you have loaded your LabelEncoder as 'encoder'\n",
        "    decoded_prediction = encoder.inverse_transform(prediction)\n",
        "    print(f\"{name} prediction: {decoded_prediction}\")\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "448K06w7cT6d",
        "outputId": "9263c1d3-228a-4e45-95c0-87b5d2f7c0b9"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Decision Tree prediction: ['potatoes']\n",
            "Random Forest prediction: ['potatoes']\n",
            "SVM prediction: ['potatoes']\n",
            "KNN prediction: ['potatoes']\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "/usr/local/lib/python3.10/dist-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but StandardScaler was fitted with feature names\n",
            "  warnings.warn(\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Gradient Boosting prediction: ['potatoes']\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Save the scaler to a file\n",
        "joblib.dump(scaler, 'base_feature_scaler.joblib')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ByINvSM1gSHN",
        "outputId": "6bbfe644-762c-4502-a07d-05dbcf26fd4b"
      },
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "['base_feature_scaler.joblib']"
            ]
          },
          "metadata": {},
          "execution_count": 11
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Save the LabelEncoder to a file\n",
        "joblib.dump(encoder, 'label_encoder.joblib')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "c9Uu7lsPgSk7",
        "outputId": "d3bade81-25b7-47a6-e9c0-c14d2ea39339"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "['label_encoder.joblib']"
            ]
          },
          "metadata": {},
          "execution_count": 12
        }
      ]
    }
  ]
}