Spaces:
Sleeping
Sleeping
File size: 16,749 Bytes
c234a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"source": [
"!pip install -U scikit-learn"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "yBUpTF0liOBf",
"outputId": "e71b2db0-5438-400e-891c-53ee35c10e4f"
},
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.4.2)\n",
"Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.25.2)\n",
"Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4)\n",
"Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.0)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QhegGo_LT4a_",
"outputId": "59e8d839-82e5-41ab-ca92-35721dcd69a0"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" N P K temperature humidity ph rainfall Total_Nutrients \\\n",
"0 90 42 43 20.879744 82.002744 6.502985 202.935536 175 \n",
"1 85 58 41 21.770462 80.319644 7.038096 226.655537 184 \n",
"2 60 55 44 23.004459 82.320763 7.840207 263.964248 159 \n",
"3 74 35 40 26.491096 80.158363 6.980401 242.864034 149 \n",
"4 78 42 42 20.130175 81.604873 7.628473 262.717340 162 \n",
"\n",
" Temperature_Humidity Log_Rainfall Label Label_Encoded \n",
"0 1712.196283 5.317804 wheat 0 \n",
"1 1748.595734 5.427834 wheat 0 \n",
"2 1893.744627 5.579595 wheat 0 \n",
"3 2123.482908 5.496611 wheat 0 \n",
"4 1642.720357 5.574878 wheat 0 \n",
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 2200 entries, 0 to 2199\n",
"Data columns (total 12 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 N 2200 non-null int64 \n",
" 1 P 2200 non-null int64 \n",
" 2 K 2200 non-null int64 \n",
" 3 temperature 2200 non-null float64\n",
" 4 humidity 2200 non-null float64\n",
" 5 ph 2200 non-null float64\n",
" 6 rainfall 2200 non-null float64\n",
" 7 Total_Nutrients 2200 non-null int64 \n",
" 8 Temperature_Humidity 2200 non-null float64\n",
" 9 Log_Rainfall 2200 non-null float64\n",
" 10 Label 2200 non-null object \n",
" 11 Label_Encoded 2200 non-null int64 \n",
"dtypes: float64(6), int64(5), object(1)\n",
"memory usage: 206.4+ KB\n",
"None\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"# Load the dataset\n",
"data = pd.read_csv('/content/Crop_Dataset.csv')\n",
"\n",
"# Display the first few rows and the data info\n",
"print(data.head())\n",
"print(data.info())\n"
]
},
{
"cell_type": "code",
"source": [
"from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
"\n",
"# Assuming 'Label' is the column with categorical data\n",
"if data['Label'].dtype == 'object':\n",
" encoder = LabelEncoder()\n",
" data['Label_Encoded'] = encoder.fit_transform(data['Label'])\n",
" y = data['Label_Encoded']\n",
"else:\n",
" y = data['Label']\n",
"\n",
"# Exclude the label column from numeric operations\n",
"numeric_features = data.select_dtypes(include=['int64', 'float64'])\n",
"X = numeric_features.drop(['Label_Encoded'], axis=1, errors='ignore')\n",
"\n",
"# Scaling numeric features\n",
"scaler = StandardScaler()\n",
"X_scaled = scaler.fit_transform(X)"
],
"metadata": {
"id": "8YDm7cLGVAdC"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print(X.head())"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "bxlFqxemUwVN",
"outputId": "8b0006fe-4fe9-4b98-8d8f-f66bdb4c9b0e"
},
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" N P K temperature humidity ph rainfall Total_Nutrients \\\n",
"0 90 42 43 20.879744 82.002744 6.502985 202.935536 175 \n",
"1 85 58 41 21.770462 80.319644 7.038096 226.655537 184 \n",
"2 60 55 44 23.004459 82.320763 7.840207 263.964248 159 \n",
"3 74 35 40 26.491096 80.158363 6.980401 242.864034 149 \n",
"4 78 42 42 20.130175 81.604873 7.628473 262.717340 162 \n",
"\n",
" Temperature_Humidity Log_Rainfall \n",
"0 1712.196283 5.317804 \n",
"1 1748.595734 5.427834 \n",
"2 1893.744627 5.579595 \n",
"3 2123.482908 5.496611 \n",
"4 1642.720357 5.574878 \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(y.head())\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Xfyef1ZHVlv9",
"outputId": "1124a98a-7088-4beb-c99f-fc99695bce26"
},
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"0 21\n",
"1 21\n",
"2 21\n",
"3 21\n",
"4 21\n",
"Name: Label_Encoded, dtype: int64\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"# Split the dataset into training and testing sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
"X_train, X_test, y_train, y_test\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qeet3FQuWMYa",
"outputId": "3134ee1c-da4a-49c9-b23a-a2824087bce7"
},
"execution_count": 8,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(array([[-0.90904306, -1.13294593, -0.67439784, ..., -1.31493084,\n",
" -0.49027085, 0.24780902],\n",
" [-0.36716896, 0.77739624, -0.57565467, ..., -0.21356106,\n",
" 0.07991257, -0.46657409],\n",
" [-1.17998011, 0.59545889, -0.45716288, ..., -0.58902803,\n",
" -0.16692839, -1.2389468 ],\n",
" ...,\n",
" [-1.07160529, -0.5264881 , -0.33867109, ..., -0.9269483 ,\n",
" -0.5842483 , 0.199803 ],\n",
" [-1.07160529, 2.14192637, 3.07784228, ..., 2.33961433,\n",
" -1.1140468 , -0.41541788],\n",
" [-0.50263749, 0.74707335, -0.51640878, ..., -0.25110776,\n",
" -0.51417889, -0.93933906]]),\n",
" array([[ 1.36682815, -1.10262304, -0.02269297, ..., 0.16190591,\n",
" 1.34399451, -2.20354942],\n",
" [ 1.28554704, -1.37552907, 0.05630155, ..., 0.06178138,\n",
" 0.58762688, -1.07859766],\n",
" [ 0.22889255, 0.26190709, 0.01680429, ..., 0.22448374,\n",
" 3.13720326, 0.44554626],\n",
" ...,\n",
" [ 1.90870225, -0.19293629, -0.63490057, ..., 0.39970166,\n",
" 0.02516414, -0.38782438],\n",
" [ 1.77323373, -0.04132183, -0.57565467, ..., 0.43724835,\n",
" -0.17876826, -0.5282515 ],\n",
" [-1.23416752, 0.44384444, -0.55590604, ..., -0.73921482,\n",
" -1.75019501, 0.99674145]]),\n",
" 1656 4\n",
" 752 2\n",
" 892 12\n",
" 1041 7\n",
" 1179 3\n",
" ..\n",
" 1638 4\n",
" 1095 7\n",
" 1130 3\n",
" 1294 9\n",
" 860 12\n",
" Name: Label_Encoded, Length: 1760, dtype: int64,\n",
" 1451 16\n",
" 1334 13\n",
" 1761 18\n",
" 1735 18\n",
" 1576 11\n",
" ..\n",
" 59 21\n",
" 71 21\n",
" 1908 14\n",
" 1958 14\n",
" 482 8\n",
" Name: Label_Encoded, Length: 440, dtype: int64)"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"source": [
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
"from sklearn.svm import SVC\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.metrics import accuracy_score\n",
"import joblib\n",
"\n",
"\n",
"# Define the models\n",
"models = {\n",
" 'Decision Tree': DecisionTreeClassifier(random_state=42),\n",
" 'Random Forest': RandomForestClassifier(random_state=42),\n",
" 'SVM': SVC(kernel='rbf', random_state=42),\n",
" 'KNN': KNeighborsClassifier(),\n",
" 'Gradient Boosting': GradientBoostingClassifier(random_state=42)\n",
"}\n",
"\n",
"# Train each model and evaluate on the training set\n",
"train_accuracies = {}\n",
"for name, model in models.items():\n",
" model.fit(X_train, y_train)\n",
" y_train_pred = model.predict(X_train)\n",
" train_accuracy = accuracy_score(y_train, y_train_pred)\n",
" train_accuracies[name] = train_accuracy\n",
" print(f\"{name} training accuracy: {train_accuracy:.4f}\")\n",
"\n",
" # Save the model\n",
" model_filename = f'{name.replace(\" \", \"_\").lower()}_model.joblib'\n",
" joblib.dump(model, model_filename)\n",
" print(f\"Saved {name} model as {model_filename}\")\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "TsmaeAEYbj6Y",
"outputId": "0b6e493c-9421-4d88-8e97-0591713968e3"
},
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Decision Tree training accuracy: 1.0000\n",
"Saved Decision Tree model as decision_tree_model.joblib\n",
"Random Forest training accuracy: 1.0000\n",
"Saved Random Forest model as random_forest_model.joblib\n",
"SVM training accuracy: 0.9875\n",
"Saved SVM model as svm_model.joblib\n",
"KNN training accuracy: 0.9881\n",
"Saved KNN model as knn_model.joblib\n",
"Gradient Boosting training accuracy: 1.0000\n",
"Saved Gradient Boosting model as gradient_boosting_model.joblib\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Example new data for prediction\n",
"new_data = [[129,\t43,\t16, 25.5503704,\t77.85055621,\t6.73210948,\t78.58488484,\t188,\t1989.110547,\t4.376824186]] # Adjust these values as necessary\n",
"new_data_scaled = scaler.transform(new_data) # Assuming 'scaler' is already fitted and saved/loaded similarly\n",
"\n",
"# Load models and make predictions\n",
"predictions = {}\n",
"for name in models.keys():\n",
" model_filename = f'{name.replace(\" \", \"_\").lower()}_model.joblib'\n",
" loaded_model = joblib.load(model_filename)\n",
" prediction = loaded_model.predict(new_data_scaled)\n",
" predictions[name] = prediction\n",
"\n",
" # Assuming you have loaded your LabelEncoder as 'encoder'\n",
" decoded_prediction = encoder.inverse_transform(prediction)\n",
" print(f\"{name} prediction: {decoded_prediction}\")\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "448K06w7cT6d",
"outputId": "9263c1d3-228a-4e45-95c0-87b5d2f7c0b9"
},
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Decision Tree prediction: ['potatoes']\n",
"Random Forest prediction: ['potatoes']\n",
"SVM prediction: ['potatoes']\n",
"KNN prediction: ['potatoes']\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but StandardScaler was fitted with feature names\n",
" warnings.warn(\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Gradient Boosting prediction: ['potatoes']\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Save the scaler to a file\n",
"joblib.dump(scaler, 'base_feature_scaler.joblib')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ByINvSM1gSHN",
"outputId": "6bbfe644-762c-4502-a07d-05dbcf26fd4b"
},
"execution_count": 11,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['base_feature_scaler.joblib']"
]
},
"metadata": {},
"execution_count": 11
}
]
},
{
"cell_type": "code",
"source": [
"# Save the LabelEncoder to a file\n",
"joblib.dump(encoder, 'label_encoder.joblib')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "c9Uu7lsPgSk7",
"outputId": "d3bade81-25b7-47a6-e9c0-c14d2ea39339"
},
"execution_count": 12,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['label_encoder.joblib']"
]
},
"metadata": {},
"execution_count": 12
}
]
}
]
} |