{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "!pip install -U scikit-learn"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "yBUpTF0liOBf",
        "outputId": "e71b2db0-5438-400e-891c-53ee35c10e4f"
      },
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.4.2)\n",
            "Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.25.2)\n",
            "Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4)\n",
            "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.0)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "QhegGo_LT4a_",
        "outputId": "59e8d839-82e5-41ab-ca92-35721dcd69a0"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "    N   P   K  temperature   humidity        ph    rainfall  Total_Nutrients  \\\n",
            "0  90  42  43    20.879744  82.002744  6.502985  202.935536              175   \n",
            "1  85  58  41    21.770462  80.319644  7.038096  226.655537              184   \n",
            "2  60  55  44    23.004459  82.320763  7.840207  263.964248              159   \n",
            "3  74  35  40    26.491096  80.158363  6.980401  242.864034              149   \n",
            "4  78  42  42    20.130175  81.604873  7.628473  262.717340              162   \n",
            "\n",
            "   Temperature_Humidity  Log_Rainfall  Label  Label_Encoded  \n",
            "0           1712.196283      5.317804  wheat              0  \n",
            "1           1748.595734      5.427834  wheat              0  \n",
            "2           1893.744627      5.579595  wheat              0  \n",
            "3           2123.482908      5.496611  wheat              0  \n",
            "4           1642.720357      5.574878  wheat              0  \n",
            "<class 'pandas.core.frame.DataFrame'>\n",
            "RangeIndex: 2200 entries, 0 to 2199\n",
            "Data columns (total 12 columns):\n",
            " #   Column                Non-Null Count  Dtype  \n",
            "---  ------                --------------  -----  \n",
            " 0   N                     2200 non-null   int64  \n",
            " 1   P                     2200 non-null   int64  \n",
            " 2   K                     2200 non-null   int64  \n",
            " 3   temperature           2200 non-null   float64\n",
            " 4   humidity              2200 non-null   float64\n",
            " 5   ph                    2200 non-null   float64\n",
            " 6   rainfall              2200 non-null   float64\n",
            " 7   Total_Nutrients       2200 non-null   int64  \n",
            " 8   Temperature_Humidity  2200 non-null   float64\n",
            " 9   Log_Rainfall          2200 non-null   float64\n",
            " 10  Label                 2200 non-null   object \n",
            " 11  Label_Encoded         2200 non-null   int64  \n",
            "dtypes: float64(6), int64(5), object(1)\n",
            "memory usage: 206.4+ KB\n",
            "None\n"
          ]
        }
      ],
      "source": [
        "import pandas as pd\n",
        "\n",
        "# Load the dataset\n",
        "data = pd.read_csv('/content/Crop_Dataset.csv')\n",
        "\n",
        "# Display the first few rows and the data info\n",
        "print(data.head())\n",
        "print(data.info())\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
        "\n",
        "# Assuming 'Label' is the column with categorical data\n",
        "if data['Label'].dtype == 'object':\n",
        "    encoder = LabelEncoder()\n",
        "    data['Label_Encoded'] = encoder.fit_transform(data['Label'])\n",
        "    y = data['Label_Encoded']\n",
        "else:\n",
        "    y = data['Label']\n",
        "\n",
        "# Exclude the label column from numeric operations\n",
        "numeric_features = data.select_dtypes(include=['int64', 'float64'])\n",
        "X = numeric_features.drop(['Label_Encoded'], axis=1, errors='ignore')\n",
        "\n",
        "# Scaling numeric features\n",
        "scaler = StandardScaler()\n",
        "X_scaled = scaler.fit_transform(X)"
      ],
      "metadata": {
        "id": "8YDm7cLGVAdC"
      },
      "execution_count": 5,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "print(X.head())"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "bxlFqxemUwVN",
        "outputId": "8b0006fe-4fe9-4b98-8d8f-f66bdb4c9b0e"
      },
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "    N   P   K  temperature   humidity        ph    rainfall  Total_Nutrients  \\\n",
            "0  90  42  43    20.879744  82.002744  6.502985  202.935536              175   \n",
            "1  85  58  41    21.770462  80.319644  7.038096  226.655537              184   \n",
            "2  60  55  44    23.004459  82.320763  7.840207  263.964248              159   \n",
            "3  74  35  40    26.491096  80.158363  6.980401  242.864034              149   \n",
            "4  78  42  42    20.130175  81.604873  7.628473  262.717340              162   \n",
            "\n",
            "   Temperature_Humidity  Log_Rainfall  \n",
            "0           1712.196283      5.317804  \n",
            "1           1748.595734      5.427834  \n",
            "2           1893.744627      5.579595  \n",
            "3           2123.482908      5.496611  \n",
            "4           1642.720357      5.574878  \n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(y.head())\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Xfyef1ZHVlv9",
        "outputId": "1124a98a-7088-4beb-c99f-fc99695bce26"
      },
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "0    21\n",
            "1    21\n",
            "2    21\n",
            "3    21\n",
            "4    21\n",
            "Name: Label_Encoded, dtype: int64\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.model_selection import train_test_split\n",
        "\n",
        "# Split the dataset into training and testing sets\n",
        "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
        "X_train, X_test, y_train, y_test\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "qeet3FQuWMYa",
        "outputId": "3134ee1c-da4a-49c9-b23a-a2824087bce7"
      },
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "(array([[-0.90904306, -1.13294593, -0.67439784, ..., -1.31493084,\n",
              "         -0.49027085,  0.24780902],\n",
              "        [-0.36716896,  0.77739624, -0.57565467, ..., -0.21356106,\n",
              "          0.07991257, -0.46657409],\n",
              "        [-1.17998011,  0.59545889, -0.45716288, ..., -0.58902803,\n",
              "         -0.16692839, -1.2389468 ],\n",
              "        ...,\n",
              "        [-1.07160529, -0.5264881 , -0.33867109, ..., -0.9269483 ,\n",
              "         -0.5842483 ,  0.199803  ],\n",
              "        [-1.07160529,  2.14192637,  3.07784228, ...,  2.33961433,\n",
              "         -1.1140468 , -0.41541788],\n",
              "        [-0.50263749,  0.74707335, -0.51640878, ..., -0.25110776,\n",
              "         -0.51417889, -0.93933906]]),\n",
              " array([[ 1.36682815, -1.10262304, -0.02269297, ...,  0.16190591,\n",
              "          1.34399451, -2.20354942],\n",
              "        [ 1.28554704, -1.37552907,  0.05630155, ...,  0.06178138,\n",
              "          0.58762688, -1.07859766],\n",
              "        [ 0.22889255,  0.26190709,  0.01680429, ...,  0.22448374,\n",
              "          3.13720326,  0.44554626],\n",
              "        ...,\n",
              "        [ 1.90870225, -0.19293629, -0.63490057, ...,  0.39970166,\n",
              "          0.02516414, -0.38782438],\n",
              "        [ 1.77323373, -0.04132183, -0.57565467, ...,  0.43724835,\n",
              "         -0.17876826, -0.5282515 ],\n",
              "        [-1.23416752,  0.44384444, -0.55590604, ..., -0.73921482,\n",
              "         -1.75019501,  0.99674145]]),\n",
              " 1656     4\n",
              " 752      2\n",
              " 892     12\n",
              " 1041     7\n",
              " 1179     3\n",
              "         ..\n",
              " 1638     4\n",
              " 1095     7\n",
              " 1130     3\n",
              " 1294     9\n",
              " 860     12\n",
              " Name: Label_Encoded, Length: 1760, dtype: int64,\n",
              " 1451    16\n",
              " 1334    13\n",
              " 1761    18\n",
              " 1735    18\n",
              " 1576    11\n",
              "         ..\n",
              " 59      21\n",
              " 71      21\n",
              " 1908    14\n",
              " 1958    14\n",
              " 482      8\n",
              " Name: Label_Encoded, Length: 440, dtype: int64)"
            ]
          },
          "metadata": {},
          "execution_count": 8
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.tree import DecisionTreeClassifier\n",
        "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
        "from sklearn.svm import SVC\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "from sklearn.metrics import accuracy_score\n",
        "import joblib\n",
        "\n",
        "\n",
        "# Define the models\n",
        "models = {\n",
        "    'Decision Tree': DecisionTreeClassifier(random_state=42),\n",
        "    'Random Forest': RandomForestClassifier(random_state=42),\n",
        "    'SVM': SVC(kernel='rbf', random_state=42),\n",
        "    'KNN': KNeighborsClassifier(),\n",
        "    'Gradient Boosting': GradientBoostingClassifier(random_state=42)\n",
        "}\n",
        "\n",
        "# Train each model and evaluate on the training set\n",
        "train_accuracies = {}\n",
        "for name, model in models.items():\n",
        "    model.fit(X_train, y_train)\n",
        "    y_train_pred = model.predict(X_train)\n",
        "    train_accuracy = accuracy_score(y_train, y_train_pred)\n",
        "    train_accuracies[name] = train_accuracy\n",
        "    print(f\"{name} training accuracy: {train_accuracy:.4f}\")\n",
        "\n",
        "    # Save the model\n",
        "    model_filename = f'{name.replace(\" \", \"_\").lower()}_model.joblib'\n",
        "    joblib.dump(model, model_filename)\n",
        "    print(f\"Saved {name} model as {model_filename}\")\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "TsmaeAEYbj6Y",
        "outputId": "0b6e493c-9421-4d88-8e97-0591713968e3"
      },
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Decision Tree training accuracy: 1.0000\n",
            "Saved Decision Tree model as decision_tree_model.joblib\n",
            "Random Forest training accuracy: 1.0000\n",
            "Saved Random Forest model as random_forest_model.joblib\n",
            "SVM training accuracy: 0.9875\n",
            "Saved SVM model as svm_model.joblib\n",
            "KNN training accuracy: 0.9881\n",
            "Saved KNN model as knn_model.joblib\n",
            "Gradient Boosting training accuracy: 1.0000\n",
            "Saved Gradient Boosting model as gradient_boosting_model.joblib\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Example new data for prediction\n",
        "new_data = [[129,\t43,\t16, 25.5503704,\t77.85055621,\t6.73210948,\t78.58488484,\t188,\t1989.110547,\t4.376824186]]  # Adjust these values as necessary\n",
        "new_data_scaled = scaler.transform(new_data)  # Assuming 'scaler' is already fitted and saved/loaded similarly\n",
        "\n",
        "# Load models and make predictions\n",
        "predictions = {}\n",
        "for name in models.keys():\n",
        "    model_filename = f'{name.replace(\" \", \"_\").lower()}_model.joblib'\n",
        "    loaded_model = joblib.load(model_filename)\n",
        "    prediction = loaded_model.predict(new_data_scaled)\n",
        "    predictions[name] = prediction\n",
        "\n",
        "    # Assuming you have loaded your LabelEncoder as 'encoder'\n",
        "    decoded_prediction = encoder.inverse_transform(prediction)\n",
        "    print(f\"{name} prediction: {decoded_prediction}\")\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "448K06w7cT6d",
        "outputId": "9263c1d3-228a-4e45-95c0-87b5d2f7c0b9"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Decision Tree prediction: ['potatoes']\n",
            "Random Forest prediction: ['potatoes']\n",
            "SVM prediction: ['potatoes']\n",
            "KNN prediction: ['potatoes']\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "/usr/local/lib/python3.10/dist-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but StandardScaler was fitted with feature names\n",
            "  warnings.warn(\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Gradient Boosting prediction: ['potatoes']\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Save the scaler to a file\n",
        "joblib.dump(scaler, 'base_feature_scaler.joblib')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ByINvSM1gSHN",
        "outputId": "6bbfe644-762c-4502-a07d-05dbcf26fd4b"
      },
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "['base_feature_scaler.joblib']"
            ]
          },
          "metadata": {},
          "execution_count": 11
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Save the LabelEncoder to a file\n",
        "joblib.dump(encoder, 'label_encoder.joblib')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "c9Uu7lsPgSk7",
        "outputId": "d3bade81-25b7-47a6-e9c0-c14d2ea39339"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "['label_encoder.joblib']"
            ]
          },
          "metadata": {},
          "execution_count": 12
        }
      ]
    }
  ]
}